Skip to main content
Log in

Memristive Hindmarsh-Rose network in 2D lattice with distance-dependent chemical synapses

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this work, the synchronisation scenario and pattern formations are analysed in a network of modified Hindmarsh-Rose neurons arranged in a two-dimensional lattice. The coupling between neurons is nonlinear in nature and takes into account the distance between the neurons that form a square around it. The power law exponent strengthens the distance dependence. The study is carried out by varying coupling strength, distance dependence and coordination number. As the strength of the distance dependence of coupling increases, synchrony attains at a higher coupling strength. The analysis of the synchronisation scenario indicates that the synchronisation within a group is low and the synchrony between groups is high. The coupling threshold for attaining synchrony is determined by the coordination number and is not affected by the size of the network. As the coordination number increases, the synchrony attains at a weaker coupling strength. The stability of the synchrony is quantified using the Lyapunov function approach. Each group responds differently to the same coupling strength and the network shows interesting spatiotemporal patterns. The emergence of chimera and multichimera states is quantified using the strength of incoherence and discontinuity measure. This work sheds light on the coordination between and within layers of a complex system, including how different layers have unique responses to the same input. It also helps to understand how the interplay between coupling strength and distance dependence leads to the formation of interesting patterns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The data that support the findings were generated from numerical simulations by the software MATLAB.

Code availability

Code for data simulation was developed by ourselves in MATLAB and will be made available on request.

References

  1. Pikovsky, A., Rosenblum, M., Kurths, J., et al.: A universal concept in nonlinear sciences. Self 2, 3 (2001)

    MATH  Google Scholar 

  2. Boccaletti, S., Bianconi, G., Criado, R., Del Genio, C.I., Gómez-Gardenes, J., Romance, M., Sendina-Nadal, I., Wang, Z., Zanin, M.: The structure and dynamics of multilayer networks. Phys. Rep. 544(1), 1 (2014)

    MathSciNet  Google Scholar 

  3. Fischer, I., Vicente, R., Buldú, J.M., Peil, M., Mirasso, C.R., Torrent, M., García-Ojalvo, J.: Zero-lag long-range synchronization via dynamical relaying. Phys. Rev. Lett. 97(12), 123902 (2006)

    Google Scholar 

  4. Bergner, A., Frasca, M., Sciuto, G., Buscarino, A., Ngamga, E.J., Fortuna, L., Kurths, J.: Remote synchronization in star networks. Phys. Rev. E 85(2), 026208 (2012)

    Google Scholar 

  5. Ma, J., Tang, J.: A review for dynamics in neuron and neuronal network. Nonlinear Dyn. 89(3), 1569 (2017)

    MathSciNet  Google Scholar 

  6. Ma, J., Tang, J.: A review for dynamics of collective behaviors of network of neurons. Science China Technol. Sci. 58(12), 2038 (2015)

    Google Scholar 

  7. Gollo, L.L., Mirasso, C.R., Atienza, M., Crespo-Garcia, M., Cantero, J.L.: Theta band zero-lag long-range cortical synchronization via hippocampal dynamical relaying. PLoS ONE 6(3), e17756 (2011)

    Google Scholar 

  8. Wang, Q., Zheng, Y., Ma, J.: Cooperative dynamics in neuronal networks. Chaos Solitons Fractals 56, 19 (2013)

    Google Scholar 

  9. Huang, X., Troy, W.C., Yang, Q., Ma, H., Laing, C.R., Schiff, S.J., Wu, J.Y.: Spiral waves in disinhibited mammalian neocortex. J. Neurosci. 24(44), 9897 (2004)

    Google Scholar 

  10. Clauset, A., Newman, M.E., Moore, C.: Finding community structure in very large networks. Phys. Rev. E 70(6), 066111 (2004)

    Google Scholar 

  11. Moslonka-Lefebvre, M., Gilligan, C.A., Monod, H., Belloc, C., Ezanno, P., Filipe, J.A., Vergu, E.: Market analyses of livestock trade networks to inform the prevention of joint economic and epidemiological risks. J. R. Soc. Interface 13(116), 20151099 (2016)

    Google Scholar 

  12. Grimm, V., Revilla, E., Berger, U., Jeltsch, F., Mooij, W.M., Railsback, S.F., Thulke, H.H., Weiner, J., Wiegand, T., DeAngelis, D.L.: Pattern-oriented modeling of agent-based complex systems: lessons from ecology. Science 310(5750), 987 (2005)

  13. Sprott, J.: Competition with evolution in ecology and finance. Phys. Lett. A 325(5–6), 329 (2004)

    MathSciNet  MATH  Google Scholar 

  14. Woolley-Meza, O., Thiemann, C., Grady, D., Lee, J.J., Seebens, H., Blasius, B., Brockmann, D.: Complexity in human transportation networks: a comparative analysis of worldwide air transportation and global cargo-ship movements. Eur. Phys. J. B 84(4), 589 (2011)

    Google Scholar 

  15. Battiston, F., Nicosia, V., Chavez, M., Latora, V.: Multilayer motif analysis of brain networks. Chaos Interdiscip. J. Nonlinear Sci. 27(4), 047404 (2017)

    MathSciNet  Google Scholar 

  16. Chouzouris, T., Omelchenko, I., Zakharova, A., Hlinka, J., Jiruska, P., Schöll, E.: Chimera states in brain networks: Empirical neural vs. modular fractal connectivity. Chaos Interdiscip. J. Nonlinear Sci. 28(4), 045112 (2018)

    MathSciNet  Google Scholar 

  17. Ramlow, L., Sawicki, J., Zakharova, A., Hlinka, J., Claussen, J.C., Schöll, E.: Partial synchronization in empirical brain networks as a model for unihemispheric sleep. EPL (Europhys. Lett.) 126(5), 50007 (2019)

    Google Scholar 

  18. Kivelä, M., Arenas, A., Barthelemy, M., Gleeson, J.P., Moreno, Y., Porter, M.A.: Multilayer networks. J. Complex Netw. 2(3), 203 (2014)

    Google Scholar 

  19. De Domenico, M., Granell, C., Porter, M.A., Arenas, A.: The physics of spreading processes in multilayer networks. Nat. Phys. 12(10), 901 (2016)

    Google Scholar 

  20. Gambuzza, L.V., Frasca, M., Fortuna, L., Boccaletti, S.: Inhomogeneity induces relay synchronization in complex networks. Phys. Rev. E 93(4), 042203 (2016)

    Google Scholar 

  21. Vaiana, M., Muldoon, S.F.: Multilayer brain networks. J. Nonlinear Sci. 30(5), 2147 (2020)

    MathSciNet  MATH  Google Scholar 

  22. Buzsáki, G., Moser, E.I.: Memory, navigation and theta rhythm in the hippocampal-entorhinal system. Nat. Neurosci. 16(2), 130 (2013)

    Google Scholar 

  23. Churchland, M.M., Cunningham, J.P., Kaufman, M.T., Foster, J.D., Nuyujukian, P., Ryu, S.I., Shenoy, K.V.: Neural population dynamics during reaching. Nature 487(7405), 51 (2012)

    Google Scholar 

  24. Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., Hwang, D.U.: Complex networks: Structure and dynamics. Phys. Rep. 424(4–5), 175 (2006)

    MathSciNet  MATH  Google Scholar 

  25. Hindmarsh, J.L., Rose, R.: A model of neuronal bursting using three coupled first order differential equations. Proc. R. Soc. Lond. Ser. B Biol. Sci. 221(1222), 87 (1984)

    Google Scholar 

  26. Wang, G., Yu, D., Ding, Q., Li, T., Jia, Y.: Effects of electric field on multiple vibrational resonances in Hindmarsh-Rose neuronal systems. Chaos Solitons Fractals 150, 111210 (2021)

    MathSciNet  MATH  Google Scholar 

  27. Xu, Y., Wu, Y.: Analytical predictions of stable and unstable firings to chaos in a Hindmarsh-Rose neuron system. Chaos Interdiscip. J. Nonlinear Sci. 32(11), 113113 (2022)

    MathSciNet  Google Scholar 

  28. Usha, K., Subha, P., Nayak, C.R.: The route to synchrony via drum head mode and mixed oscillatory state in star coupled Hindmarsh-Rose neural network. Chaos, Solitons Fractals 108, 25 (2018)

    MATH  Google Scholar 

  29. Usha, K., Subha, P.: Star-coupled Hindmarsh-Rose neural network with chemical synapses. Int. J. Mod. Phys. C 29(03), 1850023 (2018)

    Google Scholar 

  30. Xu, Y., Ying, H., Jia, Y., Ma, J., Hayat, T.: Autaptic regulation of electrical activities in neuron under electromagnetic induction. Sci. Rep. 7, 43452 (2017). https://doi.org/10.1038/srep43452

    Article  Google Scholar 

  31. Xu, Y., Jia, Y., Ma, J., Hayat, T., Alsaedi, A.: Collective responses in electrical activities of neurons under field coupling. Sci. Rep. 8, 1349 (2018). https://doi.org/10.1038/s41598-018-19858-1

    Article  Google Scholar 

  32. Majhi, S., Ghosh, D.: Alternating chimeras in networks of ephaptically coupled bursting neurons. Chaos Interdiscip. J. Nonlinear Sci. 28(8), 083113 (2018)

    MathSciNet  Google Scholar 

  33. Wu, F., Zhang, Y., Zhang, X.: Regulating firing rates in a neural circuit by activating memristive synapse with magnetic coupling. Nonlinear Dyn. 98, 971 (2019)

    Google Scholar 

  34. Usha, K., Subha, P.: Hindmarsh-Rose neuron model with memristors. Biosystems 178, 1 (2019)

    MATH  Google Scholar 

  35. Usha, K., Subha, P.: Energy feedback and synchronous dynamics of Hindmarsh-Rose neuron model with memristor. Chin. Phys. B 28(2), 020502 (2019)

    Google Scholar 

  36. Usha, K., Subha, P.: Collective dynamics and energy aspects of star-coupled Hindmarsh-Rose neuron model with electrical, chemical and field couplings. Nonlinear Dyn. 96(3), 2115 (2019)

    MATH  Google Scholar 

  37. Vijay, S.D., Thamilmaran, K., Ahamed, A.I.: Superextreme spiking oscillations and multistability in a memristor-based Hindmarsh–Rose neuron model. Nonlinear Dyn. pp. 1–11 (2022)

  38. Banerjee, T., Dutta, P.S., Zakharova, A., Schöll, E.: Chimera patterns induced by distance-dependent power-law coupling in ecological networks. Phys. Rev. E 94(3), 032206 (2016)

    Google Scholar 

  39. Gupta, A., Banerjee, T., Dutta, P.S.: Increased persistence via asynchrony in oscillating ecological populations with long-range interaction. Phys. Rev. E 96(4), 042202 (2017)

    Google Scholar 

  40. Sathiyadevi, K., Chandrasekar, V., Senthilkumar, D., Lakshmanan, M.: Long-range interaction induced collective dynamical behaviors. J. Phys. A: Math. Theor. 52(18), 184001 (2019)

    MathSciNet  MATH  Google Scholar 

  41. Bandyopadhyay, B., Khatun, T., Dutta, P.S., Banerjee, T.: Symmetry breaking by power-law coupling. Chaos, Solitons Fractals 139, 110289 (2020)

    MathSciNet  MATH  Google Scholar 

  42. Budzinski, R., Rossi, K., Boaretto, B., Prado, T., Lopes, S.: Synchronization malleability in neural networks under a distance-dependent coupling. Phys. Rev. Res. 2(4), 043309 (2020)

    Google Scholar 

  43. Remi, T., Subha, P., Usha, K.: Collective dynamics of neural network with distance dependent field coupling. Commun. Nonlinear Sci. Numer. Simul. 110, 106390 (2022)

    MathSciNet  MATH  Google Scholar 

  44. Bera, B.K., Ghosh, D., Lakshmanan, M.: Chimera states in bursting neurons. Phys. Rev. E 93(1), 012205 (2016)

    MathSciNet  Google Scholar 

  45. Kundu, S., Majhi, S., Bera, B.K., Ghosh, D., Lakshmanan, M.: Chimera states in two-dimensional networks of locally coupled oscillators. Phys. Rev. E 97(2), 022201 (2018)

    MathSciNet  Google Scholar 

  46. Majhi, S., Bera, B.K., Ghosh, D., Perc, M.: Chimera states in neuronal networks: a review. Phys. Life Rev. 28, 100 (2019)

    Google Scholar 

  47. Ren, S.Q., Li, Z., Lin, S., Bergami, M., Shi, S.H.: Precise long-range microcircuit-to-microcircuit communication connects the frontal and sensory cortices in the mammalian brain. Neuron 104(2), 385 (2019)

    Google Scholar 

  48. Ang, E.S., Haydar, T.F., Gluncic, V., Rakic, P.: Four-dimensional migratory coordinates of GABAergic interneurons in the developing mouse cortex. J. Neurosci. 23(13), 5805 (2003)

    Google Scholar 

  49. Zhang, X.J., Li, Z., Han, Z., Sultan, K.T., Huang, K., Shi, S.H.: Precise inhibitory microcircuit assembly of developmentally related neocortical interneurons in clusters. Nat. Commun. 8(1), 16091 (2017)

    Google Scholar 

  50. Shima, S.I., Kuramoto, Y.: Rotating spiral waves with phase-randomized core in nonlocally coupled oscillators. Phys. Rev. E 69(3), 036213 (2004)

    Google Scholar 

  51. Grace, M., Hütt, M.T.: Predictability of spatio-temporal patterns in a lattice of coupled FitzHugh-Nagumo oscillators. J. R. Soc. Interface 10(81), 20121016 (2013)

    Google Scholar 

  52. Bukh, A., Strelkova, G., Anishchenko, V.: Spiral wave patterns in a two-dimensional lattice of nonlocally coupled maps modeling neural activity. Chaos, Solitons Fractals 120, 75 (2019)

    MathSciNet  MATH  Google Scholar 

  53. Majhi, S., Perc, M., Ghosh, D.: Chimera states in uncoupled neurons induced by a multilayer structure. Sci. Rep. 6(1), 1 (2016)

    Google Scholar 

  54. Rybalova, E., Bukh, A., Strelkova, G., Anishchenko, V.: Spiral and target wave chimeras in a 2D lattice of map-based neuron models. Chaos Interdiscip. J. Nonlinear Sci. 29(10), 101104 (2019)

    MathSciNet  MATH  Google Scholar 

  55. Xu, F., Zhang, J., Jin, M., Huang, S., Fang, T.: Chimera states and synchronization behavior in multilayer memristive neural networks. Nonlinear Dyn. 94(2), 775 (2018)

    Google Scholar 

  56. Kundu, S., Bera, B.K., Ghosh, D., Lakshmanan, M.: Chimera patterns in three-dimensional locally coupled systems. Phys. Rev. E 99(2), 022204 (2019)

    Google Scholar 

  57. Frolov, N.S., Maksimenko, V.A., Khramova, M.V., Pisarchik, A.N., Hramov, A.E.: Dynamics of functional connectivity in multilayer cortical brain network during sensory information processing. Eur. Phys. J. Spec. Top. 228(11), 2381 (2019)

    Google Scholar 

  58. Yao, Y., Deng, H., Yi, M., Ma, J.: Impact of bounded noise on the formation and instability of spiral wave in a 2D Lattice of neurons. Sci. Rep. 7(1), 1 (2017)

    Google Scholar 

  59. Shafiei, M., Jafari, S., Parastesh, F., Ozer, M., Kapitaniak, T., Perc, M.: Time delayed chemical synapses and synchronization in multilayer neuronal networks with ephaptic inter-layer coupling. Commun. Nonlinear Sci. Numer. Simul. 84, 105175 (2020)

    MathSciNet  MATH  Google Scholar 

  60. Yan, B., Parastesh, F., He, S., Rajagopal, K., Jafari, S., Perc, M., et al.: Interlayer and intralayer synchronization in multiplex fractional-order neuronal networks. Fractals 30(10), 2240194 (2022)

    MATH  Google Scholar 

  61. Rakshit, S., Bera, B.K., Ghosh, D.: Synchronization in a temporal multiplex neuronal hypernetwork. Phys. Rev. E 98(3), 032305 (2018)

    MathSciNet  Google Scholar 

  62. Drauschke, F., Sawicki, J., Berner, R., Omelchenko, I., Schöll, E.: Chaos: Effect of topology upon relay synchronization in triplex neuronal networks. Interdiscip. J. Nonlinear Sci. 30(5), 051104 (2020)

  63. Tan, Y., Wang, C.: Chaos: A simple locally active memristor and its application in HR neurons. Interdiscip. J. Nonlinear Sci. 30(5), 053118 (2020). https://doi.org/10.1063/1.5143071

    Article  MATH  Google Scholar 

  64. Shi, X., Wang, Z.: Adaptive synchronization of time delay Hindmarsh-Rose neuron system via self-feedback. Nonlinear Dyn. 69(4), 2147 (2012)

    MathSciNet  Google Scholar 

  65. Belykh, I., De Lange, E., Hasler, M.: Synchronization of bursting neurons: what matters in the network topology. Phys. Rev. Lett. 94(18), 188101 (2005)

    Google Scholar 

  66. Pecora, L.M., Carroll, T.L.: Master stability functions for synchronized coupled systems. Phys. Rev. Lett. 80(10), 2109 (1998)

    Google Scholar 

  67. Dhamala, M., Jirsa, V.K., Ding, M.: Transitions to synchrony in coupled bursting neurons. Phys. Rev. Lett. 92(2), 028101 (2004)

    Google Scholar 

  68. Dhamala, M., Jirsa, V.K., Ding, M.: Enhancement of neural synchrony by time delay. Phys. Rev. Lett. 92(7), 074104 (2004)

    Google Scholar 

  69. Etémé, A.S., Tabi, C.B., Beyala Ateba, J.F., Ekobena Fouda, H.P., Mohamadou, A., Crépin Kofané, T.: Chaos break and synchrony enrichment within Hindmarsh-Rose-type memristive neural models. Nonlinear Dyn. 105(1), 785 (2021)

    Google Scholar 

  70. Yamakou, M.E.: Chaotic synchronization of memristive neurons: Lyapunov function versus Hamilton function. Nonlinear Dyn. 101(1), 487 (2020)

    MathSciNet  Google Scholar 

  71. Gopal, R., Chandrasekar, V., Venkatesan, A., Lakshmanan, M.: Observation and characterization of chimera states in coupled dynamical systems with nonlocal coupling. Phys. Rev. E 89(5), 052914 (2014)

    Google Scholar 

Download references

Acknowledgements

TR would like to thank UGC, India, for the research fellowship through MANF, and PAS would like to acknowledge DST, India, for the financial assistance through FIST program.

Funding

No funding was received to assist with the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed to the study, conception and design. The work, data simulation and analysis were performed by T. Remi. P. A. Subha made substantial contributions to the conception or design of the work.

Corresponding author

Correspondence to P. A. Subha.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Remi, T., Subha, P. . Memristive Hindmarsh-Rose network in 2D lattice with distance-dependent chemical synapses. Nonlinear Dyn 111, 14455–14466 (2023). https://doi.org/10.1007/s11071-023-08542-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-08542-3

Keywords

Navigation