Skip to main content
Log in

Nonlinear image authentication algorithm based on double fractional Mellin domain

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, we propose a novel dual-user image authentication algorithm based on the double fractional Mellin transform. We perform a security analysis of the nonlinear cryptosystem based on the fractional Mellin transform and show its vulnerability. In the proposed algorithm, polar decomposition and sparse multiplexing are additionally applied to generate a ciphertext. During the encryption process, polar decomposition generates two private keys that can be utilized on the dual-user authentication platform. The proposed scheme has a large key space and is robust against several attacks such as contamination attacks (noise and occlusion), brute force attacks, plain-text attacks, and special iterative attacks. In addition, we carry out a comparison with a similar existing scheme for the proposed algorithm. Simulated results indicate that the proposed authentication algorithm is feasible and robust.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Availability of data and materials

Data sharing does not apply to this article as no datasets were generated or analyzed during the current study.

Code availability

Not applicable.

References

  1. Nishchal, N.K.: Optical Cryptosystems. IOP Publ, Bristol (2020)

    Google Scholar 

  2. Javidi, B., et al.: Roadmap on optical security. J. Opt. 18(8), 083001 (2016). https://doi.org/10.1088/2040-8978/18/8/083001

    Article  Google Scholar 

  3. Sheridan, J.T., et al.: Roadmap on holography. J. Opt. 22(12), 123002 (2020). https://doi.org/10.1088/2040-8986/abb3a4

    Article  Google Scholar 

  4. Kumar, J., Singh, P., Yadav, A.K., Kumar, A.: Asymmetric cryptosystem for phase images in fractional Fourier domain using LU-decomposition and Arnold transform. Procedia Comput. Sci. 132, 1570–1577 (2018). https://doi.org/10.1016/j.procs.2018.05.121

    Article  Google Scholar 

  5. Yadav, A.K., Singh, P., Singh, K.: Cryptosystem based on devil’s vortex Fresnel lens in the fractional Hartley domain. J. Opt. 47(2), 208–219 (2018). https://doi.org/10.1007/s12596-017-0435-9

    Article  Google Scholar 

  6. Kumari, E., Singh, P., Mukherjee, S., Purohit, G.N.: Analysis of triple random phase encoding cryptosystem in Fresnel domain. Results Opt. 1, 100009 (2020). https://doi.org/10.1016/j.rio.2020.100009

    Article  Google Scholar 

  7. Rajput, S.K., Nishchal, N.K.: Image encryption based on interference that uses fractional Fourier domain asymmetric keys. Appl. Opt. 51(10), 001446 (2012). https://doi.org/10.1364/AO.51.001446

    Article  Google Scholar 

  8. Archana, Singh, P., Rakheja, P.: Asymmetric watermarking scheme for color images using cascaded unequal modulus decomposition in Fourier domain. J. Mod. Opt. 68, 1094–1107 (2021). https://doi.org/10.1080/09500340.2021.1977404

    Article  MathSciNet  Google Scholar 

  9. Singh, P., Yadav, A.K., Singh, K., Saini, I.: Asymmetric watermarking scheme in fractional Hartley domain using modified equal modulus decomposition. J. Optoelectron. Adv. Mater. 21, 484–491 (2019)

    Google Scholar 

  10. Gupta, A.K., Kumar, P., Nishchal, N.K., Alfalou, A.: Polarization-encoded fully-phase encryption using transport-of-intensity equation. Electronics 10(8), 969 (2021). https://doi.org/10.3390/electronics10080969

    Article  Google Scholar 

  11. Kumar, R., Zhong, F., Quan, C.: Optical voice information hiding using enhanced iterative algorithm and computational ghost imaging. J. Opt. 21(6), 065704 (2019). https://doi.org/10.1088/2040-8986/ab1e32

    Article  Google Scholar 

  12. Archana, Sachin, Singh, P.: Cascaded unequal modulus decomposition in Fresnel domain- based cryptosystem to enhance the image security. Opt. Lasers Eng 137, 12 (2021). https://doi.org/10.1016/j.optlaseng.2020.106399

    Article  Google Scholar 

  13. Sachin, S., Kumar, R., Singh, P.: Unequal modulus decomposition and modified Gerchberg Saxton algorithm based asymmetric cryptosystem in Chirp-Z transform domain. Opt Quant Electron 53(5), 254 (2021). https://doi.org/10.1007/s11082-021-02908-w

    Article  Google Scholar 

  14. Refregier, P., Javidi, B.: Optical image encryption based on input plane and Fourier plane random encoding. Opt. Lett. 20(7), 767 (1995). https://doi.org/10.1364/OL.20.000767

    Article  Google Scholar 

  15. Gopinathan, U., Monaghan, D.S., Naughton, T.J., Sheridan, J.T.: A known-plaintext heuristic attack on the Fourier plane encryption algorithm. Opt. Express 14(8), 3181 (2006). https://doi.org/10.1364/OE.14.003181

    Article  Google Scholar 

  16. Peng, X., Wei, H., Zhang, P.: Chosen-plaintext attack on lensless double-random phase encoding in the Fresnel domain. Opt. Lett. 31(22), 3261 (2006). https://doi.org/10.1364/OL.31.003261

    Article  Google Scholar 

  17. Wang, M., Pousset, Y., Carré, P., Perrine, C., Zhou, N., Wu, J.: Optical image encryption scheme based on apertured fractional Mellin transform. Opt. Laser Technol. 124, 106001 (2020). https://doi.org/10.1016/j.optlastec.2019.106001

    Article  Google Scholar 

  18. Singh, H., Yadav, A.K., Vashisth, S., Singh, K.: Fully phase image encryption using double random-structured phase masks in gyrator domain. Appl. Opt. 53, 6472–6481 (2014). https://doi.org/10.1364/AO.53.006472

    Article  Google Scholar 

  19. Chang, H.T., Hwang, H.-E., Lee, C.-L.: Position multiplexing multiple-image encryption using cascaded phase-only masks in Fresnel transform domain. Opt Commun. 284(18), 4146–4151 (2011). https://doi.org/10.1016/j.optcom.2011.04.065

    Article  Google Scholar 

  20. Qin, W., Peng, X.: Asymmetric cryptosystem based on phase-truncated Fourier transforms. Opt. Lett. 35(2), 118 (2010). https://doi.org/10.1364/OL.35.000118

    Article  Google Scholar 

  21. Barfungpa, S.P., Abuturab, M.R.: Asymmetric cryptosystem using coherent superposition and equal modulus decomposition of fractional Fourier spectrum. Opt. Quant. Electron. 48(11), 520 (2016). https://doi.org/10.1007/s11082-016-0786-5

    Article  Google Scholar 

  22. Rakheja, P., Vig, R., Singh, P.: An asymmetric hybrid cryptosystem using equal modulus and random decomposition in hybrid transform domain. Opt. Quant. Electron. 51(2), 54 (2019). https://doi.org/10.1007/s11082-019-1769-0

    Article  Google Scholar 

  23. Abdelfattah, M., Hegazy, S.F., Areed, N.F.F., Obayya, S.S.A.: Compact optical asymmetric cryptosystem based on unequal modulus decomposition of multiple color images. Opt. Lasers Eng. 129, 106063 (2020). https://doi.org/10.1016/j.optlaseng.2020.106063

    Article  Google Scholar 

  24. Wang, X., Zhao, D.: A special attack on the asymmetric cryptosystem based on phase-truncated Fourier transforms. Opt. Commun. 285(6), 1078–1081 (2012). https://doi.org/10.1016/j.optcom.2011.12.017

    Article  Google Scholar 

  25. Shi, Y., Han, Y., Zhang, Q., Kuang, X.: Adaptive iterative attack towards explainable adversarial robustness. Pattern Recogn. 105, 107309 (2020). https://doi.org/10.1016/j.patcog.2020.107309

    Article  Google Scholar 

  26. Fatima, A., Nishchal, N.K.: Image authentication using a vector beam with sparse phase information. J. Opt. Soc. Am. A 35(6), 1053 (2018). https://doi.org/10.1364/JOSAA.35.001053

    Article  Google Scholar 

  27. Farajallah, M., Fawaz, Z., El Assad, S., Deforges, O.: Efficient image encryption and authentication scheme based on chaotic sequences. In: The 7th International Conference on Emerging Security Information, Systems and Technologies (2013, August)

  28. Zhao and Chi: A multi-user encryption and authentication system based on joint transform correlation. Entropy 21(9), 850 (2019). https://doi.org/10.3390/e21090850

    Article  MathSciNet  Google Scholar 

  29. Pérez-Cabré, E., Abril, H.C., Millán, M.S., Javidi, B.: Photon-counting double-random-phase encoding for secure image verification and retrieval. J. Opt. 14(9), 094001 (2012). https://doi.org/10.1088/2040-8978/14/9/094001

    Article  Google Scholar 

  30. Sui, L., Zhang, X., Tian, A.: Optical multiple-image authentication scheme based on the phase retrieval algorithm in gyrator domain. J. Opt. 19(5), 055702 (2017). https://doi.org/10.1088/2040-8986/aa6506

    Article  Google Scholar 

  31. Rivenson, Y., Stern, A., Javidi, B.: Single exposure super-resolution compressive imaging by double phase encoding. Opt. Express 18(14), 15094 (2010). https://doi.org/10.1364/OE.18.015094

    Article  Google Scholar 

  32. Yang, Z., Liu, J., Zhang, W.-X., Ruan, D., Li, J.-L.: Instant single-pixel imaging: on-chip real-time implementation based on the instant ghost imaging algorithm. OSA Contin. 3(3), 629 (2020). https://doi.org/10.1364/OSAC.389060

    Article  Google Scholar 

  33. Shi, Y., Li, T., Wang, Y., Gao, Q., Zhang, S., Li, H.: Optical image encryption via ptychography. Opt. Lett. 38(9), 1425 (2013). https://doi.org/10.1364/OL.38.001425

    Article  Google Scholar 

  34. He, X., Tao, H., Zhang, L., Yuan, X., Liu, C., Zhu, J.: Single-Shot optical multiple-image encryption based on polarization-resolved diffractive imaging. IEEE Photon. J. 11(5), 1–12 (2019). https://doi.org/10.1109/JPHOT.2019.2939164

    Article  Google Scholar 

  35. Chen, H., Du, X., Liu, Z.: Optical spectrum encryption in associated fractional Fourier transform and gyrator transform domain. Opt. Quant. Electron 48(1), 12 (2015). https://doi.org/10.1007/s11082-015-0291-2

    Article  Google Scholar 

  36. Zhou, N., Wang, Y., Gong, L.: Novel optical image encryption scheme based on fractional Mellin transform. Opt. Commun. 284(13), 3234–3242 (2011). https://doi.org/10.1016/j.optcom.2011.02.065

    Article  Google Scholar 

  37. Wang, M., Pousset, Y., Carré, P., Perrine, C., Zhou, N., Wu, J.: Image encryption scheme based on a Gaussian apertured reality-preserving fractional Mellin transform. Opt. Applicata 50(3), 11 (2020). https://doi.org/10.37190/oa200312

    Article  Google Scholar 

  38. Wang, M., Li, L., Duan, H., Xu, M.: Optical double-image encryption based on Gaussian apertured reality-preserving fractional Mellin transform. J. Mod. Opt. 68(14), 753–770 (2021). https://doi.org/10.1080/09500340.2021.1945696

    Article  MathSciNet  Google Scholar 

  39. Kumar, R., Quan, C.: Asymmetric multi-user optical cryptosystem based on polar decomposition and Shearlet transform. Opt. Lasers Eng. 120, 118–126 (2019). https://doi.org/10.1016/j.optlaseng.2019.03.024

    Article  Google Scholar 

  40. Higham, N.J.: Computing the polar decomposition—with applications. SIAM J. Sci. Stat. Comput. 7(4), 1160–1174 (1986). https://doi.org/10.1137/0907079

    Article  MathSciNet  MATH  Google Scholar 

  41. Oussama, N., Assia, B., Lemnouar, N.: Secure image encryption scheme based on polar decomposition and chaotic map. Int. J. Inform. Commun. Technol. 10(4), 437–453 (2017). https://doi.org/10.1504/IJICT.2017.084339

    Article  Google Scholar 

  42. Gong, L., Liu, X., Zheng, F., Zhou, N.: Flexible multiple-image encryption algorithm based on log-polar transform and double random phase encoding technique. J. Mod. Opt. 60(13), 1074–1082 (2013). https://doi.org/10.1080/09500340.2013.831139

    Article  Google Scholar 

  43. Zhou, N., Liu, X., Zhang, Y., Yang, Y.: Image encryption scheme based on fractional Mellin transform and phase-retrieval technique in fractional Fourier domain. Opt. Laser Technol. 47, 341–346 (2013). https://doi.org/10.1016/j.optlastec.2012.08.033

    Article  Google Scholar 

  44. Zhou, N., Wang, Y., Gong, L., Chen, X., Yang, Y.: Novel color image encryption algorithm based on the reality preserving fractional Mellin transform. Opt. Laser Technol. 44(7), 2270–2281 (2012). https://doi.org/10.1016/j.optlastec.2012.02.027

    Article  Google Scholar 

  45. Vashisth, S., Singh, H., Yadav, A.K., Singh, K.: Image encryption using fractional Mellin transform, structured phase filters, and phase retrieval. Optik 125(18), 5309–5315 (2014). https://doi.org/10.1016/j.ijleo.2014.06.068

    Article  Google Scholar 

  46. Singh, P., Yadav, A.K., Singh, K.: Known-plaintext attack on cryptosystem based on fractional Hartley transform using particle swarm optimization algorithm. In: Ray, K., Sharan, S.N., Rawat, S., Jain, S.K., Srivastava, S., Bandyopadhyay, A. (eds.) Engineering vibration, communication and information processing, vol. 478, pp. 317–327. Springer, Singapore (2019)

    Chapter  Google Scholar 

  47. Singh, P., Kumar, R., Yadav, A.K., Singh, K.: Security analysis and modified attack algorithms for a nonlinear optical cryptosystem based on DRPE. Opt. Lasers Eng. 139, 106501 (2021). https://doi.org/10.1016/j.optlaseng.2020.106501

    Article  Google Scholar 

  48. Sachin, S., Kumar, R., Singh, P.: New modified plaintext-attacks in a session for optical cryptosystem based on DRPE with PFS. Appl. Opt. 63, 623–628 (2021). https://doi.org/10.1364/AO.446070

    Article  Google Scholar 

  49. Bulbul, A., Rosen, J.: Open partial aperture imaging system based on sparse point spread holograms and nonlinear cross-correlations. Sci. Rep. 20, 13 (2020)

    Google Scholar 

  50. Anjana, S., Saini, I., Singh, P., Yadav, A.K.: Asymmetric cryptosystem using affine transform in Fourier domain. In: Bhattacharyya, S., Chaki, N., Konar, D., Chakraborty, U.K., Singh, C.T. (eds.) Advanced Computational and Communication Paradigms, vol. 706, pp. 29–37. Springer, Singapore (2018). https://doi.org/10.1007/978-981-10-8237-5_4

    Chapter  Google Scholar 

  51. Lyda, R., Hamrock, J.: Using entropy analysis to find encrypted and packed malware. IEEE Secur. Privacy Mag. 5(2), 40–45 (2007). https://doi.org/10.1109/MSP.2007.48

    Article  Google Scholar 

  52. Qin, W.: Vulnerability to chosen-plaintext attack of optoelectronic information encryption with phase-shifting interferometry. Opt. Eng. 50(6), 065601 (2011). https://doi.org/10.1117/1.3590725

    Article  Google Scholar 

  53. Liu, L., Shan, M., Zhong, Z., Liu, B.: Multiple-image encryption and authentication based on optical interference by sparsification and space multiplexing. Opt. Laser Technol. 122, 105858 (2020). https://doi.org/10.1016/j.optlastec.2019.105858

    Article  Google Scholar 

  54. Wei, H., Wang, X.: Optical multiple-image authentication and encryption based on phase retrieval and interference with sparsity constraints. Opt. Laser Technol. 142, 107257 (2021). https://doi.org/10.1016/j.optlastec.2021.107257

    Article  Google Scholar 

Download references

Funding

This work was funded by Award Reference Number 09/1152(0012)/2019-EMR-1 from the Council of Scientific & Industrial Research (CSIR), India, a Premier National R&D Organization. The contents of the publication are solely responsibility of the authors and do not necessarily represent the official views of the Council of Scientific and Industrial Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sachin.

Ethics declarations

Conflict of interest

The authors have no conflict of interest concerning the publication of this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sachin, Singh, P. & Singh, K. Nonlinear image authentication algorithm based on double fractional Mellin domain. Nonlinear Dyn 111, 13579–13600 (2023). https://doi.org/10.1007/s11071-023-08540-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-08540-5

Keywords

Navigation