Skip to main content
Log in

Rogue periodic waves and hybrid nonlinear waves in the \((2+1)\)-dimensional CDGKS equation

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The \((2+1)\)-dimensional Caudrey–Dodd–Gibbon–Kotera–Sawada (CDGKS) equation is decomposed into two \((1+1)\)-dimensional soliton equations in the modified Korteweg–de Vries (mKdV) hierarchy. With the aid of the decomposition, two rogue wave solutions to the CDGKS equation on the background of Jacobian elliptic functions dn and cn are derived by combining nonlinearization of the mKdV spectral problem and an N-fold Darboux transformation. Besides, the hybrid solutions of soliton and breather in the CDGKS equation is also presented by the N-fold Darboux transformation. In particular, the dynamical behavior of the CDGKS equation are illustrated through some figures. The  paper   enriches   the rogue wave solution structure of the higher dimensional nonlinear evolution equation on the periodic wave background.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The authors declare that all data supporting the findings of this study are available within the article.

References

  1. Ablowitz, M.J., Clarkson, P.A.: Soliton, Nonlinear Evolution Equations and Inverse Scattering. Cambridge University Press, Cambridge (1991)

    MATH  Google Scholar 

  2. Hirota, R.: The Direct Method in Soliton Theory. Cambridge University Press, Cambridge (2004)

    MATH  Google Scholar 

  3. Konopelchenko, B., Sidorenko, J., Strampp, W.: (1+1)-dimensional integrable systems as symmetry constraints of (2+1)-dimensional systems. Phys. Lett. A 157, 17–21 (1991)

    MathSciNet  Google Scholar 

  4. Chen, J.B., Pelinovsky, D.E.: Rogue periodic waves of the focusing nonlinear Schrödinger equation. Proc. R. Soc. A 474(2210), 20170814 (2018)

    MATH  Google Scholar 

  5. Chen, J.B., Pelinovsky, D.E., White, R.E.: Rogue waves on the double-periodic background in the focusing nonlinear Schrödinger equation. Phys. Rev. E 100(5), 0522199 (2019)

    Google Scholar 

  6. Chen, J.B., Pelinovsky, D.E.: Rogue periodic waves of the modified KdV equation. Nonlinearity 31(5), 1955–1980 (2018)

    MathSciNet  MATH  Google Scholar 

  7. Chen, J.B., Pelinovsky, D.E.: Rogue waves on the background of periodic standing waves in the derivative nonlinear Schrödinger equation. Phys. Rev. E 103, 062206 (2021)

    Google Scholar 

  8. Li, R.M., Geng, X.G.: Rogue periodic waves of the sine-Gordon equation. Appl. Math. Lett. 102, 106147 (2020)

    MathSciNet  MATH  Google Scholar 

  9. Peng, W.Q., Tian, S.F., Wang, X.B., Zhang, T.T.: Characteristics of rogue waves on a periodic background for the Hirota equation. Wave Motion 93, 102454 (2020)

    MathSciNet  MATH  Google Scholar 

  10. Zhang, H.Q., Gao, X., Pei, Z.J., Chen, F.: Rogue periodic waves in the fifth-order Ito equation. Appl. Math. Lett. 107, 106464 (2020)

    MathSciNet  MATH  Google Scholar 

  11. Zhang, H.Q., Chen, F.: Rogue waves for the fourth-order nonlinear Schrödinger equation on the periodic background. Chaos 31, 023129 (2021)

    MATH  Google Scholar 

  12. Wang, Z.J., Zhaqilao: Rogue wave solutions for the generalized fifth-order nonlinear Schrödinger equation on the periodic background. Wave Motion 108, 102839 (2022)

    MATH  Google Scholar 

  13. Shi, W., Zhaqilao: Rogue waves of the sixth-order nonlinear Schrödinger equation on a periodic background. Commun. Theor. Phys. 74, 055001 (2022)

    MATH  Google Scholar 

  14. Sun, H.Y., Zhaqilao: Rogue waves of the AB system on the periodic background. Int. J. Mod. Phys. B 36, 28 2250196 (2022)

    Google Scholar 

  15. Zhang, S., Zheng, X.W.: N-soliton solutions and nonlinear dynamics foe two generalized Broer–Kaup systems. Nonlinear Dyn. 107, 1179–1193 (2022)

    Google Scholar 

  16. Omar, A., Ashour, Siu A., Chin, Stanko, N., Nikoli, Milivoj R., Beli: Higher-order breathers as quasi-rogue waves on a periodic background. Nonlinear Dyn. 107 3819-3832 (2022)

  17. Ding, C.C., Gao, Y.T., Yu, X., Liu, F.Y., Wu, X.H.: N-fold generalized Darboux transformation and breather-rogue waves on the constant/periodic background for a generalized mixed nonlinear Schrödinger equation. Nonlinear Dyn. 109, 989–1004 (2022)

    Google Scholar 

  18. Zhang, H.Q., Liu, R., Chen, F.: Rogue waves on the double-periodic background for a nonlinear Schrödinger equation with higher-order effects. Nonlinear Dyn. 111, 645–654 (2023)

    Google Scholar 

  19. Zhou, H.J., Chen, Y.: Breathers and rogue waves on the double-periodic background for the reverse-space-time derivative nonlinear Schrödinger equation. Nonlinear Dyn. 106, 3437–3451 (2021)

    Google Scholar 

  20. Shi, W., Zhaqilao: Modulation instability and rogue waves for the sixth-order nonlinear Schrödinger equation with variable coefficients on a periodic background. Nonlinear Dyn. 109, 2979–2995 (2022)

    Google Scholar 

  21. Gu, C.H., Hu, H.S., Zhou, Z.X.: Darboux Transformation in Soliton Theory and Its Geometric Applications. Shanghai Science and Technology Publishing House, Shanghai (2005)

    Google Scholar 

  22. Matveev, V., Salle, M.A.: Darboux Transformations and Solitons. Springer, Berlin (1991)

    MATH  Google Scholar 

  23. Neugebauer, G., Meine, R.: Ganeral N-soliton solution of the AKNS class on arbitrary background. Phys. Lett. A 100, 467–470 (1984)

    MathSciNet  Google Scholar 

  24. Levi, D., Neugebauer, G., Meinel, R.: A new nonlinear Schrödinger equation, its hierarchy and N-soliton solutions. Phys. Lett. A 102, 1–6 (1984)

    MathSciNet  Google Scholar 

  25. Li, Y.S., Zhang, J.E.: Bidirectional soliton solutions of the classical Boussinesq system and AKNS system. Chaos Solitons Fractals 16, 271–277 (2003)

    MathSciNet  MATH  Google Scholar 

  26. Fan, E.G.: A unified and explicit construction of N-soliton solutions for the nonlinear Schrödinger equation. Commun. Theor. Phys. 36, 401–404 (2001)

    MathSciNet  MATH  Google Scholar 

  27. Zhou, Z.J., Li, Z.B.: A unified explicit construction of 2N-soliton solutions for evolution equations determined by \(2\times 2\) AKNS system. Commun. Theor. Phys. 39, 257–260 (2003)

    MathSciNet  MATH  Google Scholar 

  28. Xu, T., Zhang, H.Q., Zhang, Y.X., Li, J.: Two types of generalized integrable decompositions and new solitary-wave solutions for the modified Kadomtsev–Petviashvili equation with symbolic computation. J. Math. Phys. 49, 013501(1-19) (2008)

    MathSciNet  MATH  Google Scholar 

  29. Ma, W.X.: Complexiton solutions to the Korteweg–de Vries equation. Phys. Lett. A 301, 35–44 (2002)

    MathSciNet  MATH  Google Scholar 

  30. Konopelchenko, B.G., Dubrovsky, V.G.: Some new integrable nonlinear evolution equations in 2+1 dimensions. Phys. Lett. A 102, 15–17 (1984)

    MathSciNet  Google Scholar 

  31. Cheng, Y., Li, Y.S.: Constraints of the 2+1 dimensional integrable soliton systems. J. Phys. A: Math. Gen. 25, 419–431 (1992)

    MathSciNet  MATH  Google Scholar 

  32. Sawada, K., Kotera, T.: A method for finding N-soliton solutions of the KdV equation and KdV-like equation. Prog. Theor. Phys. 51, 1355–1367 (1974)

    MATH  Google Scholar 

  33. Caudrey, P.J., Dodd, R.K., Gibbon, J.D.: A new hierarchy of Korteweg–de Vries equations. Proc. R. Soc. A 351, 407–422 (1976)

    MathSciNet  MATH  Google Scholar 

  34. Dodd, R.K., Gibbon, J.D.: The prolongation structure of a higher order Korteweg–de Vries equation. Proc. R. Soc. A 358, 287–296 (1978)

    MathSciNet  MATH  Google Scholar 

  35. Cao, C.W., Wu, Y.T., Geng, X.G.: On quasi-periodic solutions of the 2+1 dimensional Caudrey–Dodd–Gibbon–Kotera–Sawada. Phys. Lett. A 256, 59–65 (1999)

    Google Scholar 

  36. Cheng, Y., Li, Y.S.: The constraint of the Kadomtsev–Petviashvili equation and its special solutions. Phys. Lett. A 157, 22–26 (1991)

    MathSciNet  Google Scholar 

  37. Cao, C.W., Wu, Y.T., Geng, X.G.: Relation between the Kadometsev–Petviashvili equation and the confocal involutive system. J. Math. Phys. 40, 3948–3970 (1999)

    MathSciNet  MATH  Google Scholar 

  38. Geng, X.G., Cao, C.W., Dai, H.H.: Quasi-periodic solutions for some (2+1)-dimensional integrable madels generated by the Jaulent–Miodek hierachy. J. Phys. A: Math. Gen. 34, 989–1004 (2001)

    MATH  Google Scholar 

  39. Geng, X.G., Cao, C.W.: Quasi-periodic solutions of the 2+1 dimensional modified Kortewegde Vries equation. Phys. Lett. A 261, 289–296 (1999)

    MathSciNet  MATH  Google Scholar 

  40. Cao, C.W., Geng, X.G., Wu, Y.T.: From the special 2+1 Toda lattice to the Kadomtsev–Petviashvili equation. J. Phys. A: Math. Gen. 32, 8059–8078 (1999)

    MathSciNet  MATH  Google Scholar 

  41. Dai, H.H., Geng, X.G.: On the decomposition of the modified Kadomtsev–Petviashvili equation and explicit solutions. J. Math. Phys. 41, 7501–7509 (2000)

    MathSciNet  MATH  Google Scholar 

  42. Geng, X.G.: Algebraic–geomertrical solutions of some multidimensional nonlinear evolution equations. J. Phys. A: Math. Gen. 36, 2289–2303 (2003)

    MATH  Google Scholar 

  43. Lou, S.Y., Hu, X.B.: Non-local symmetries via Darboux transformations. J. Phys. A: Math. Gen. 30, L95–L100 (1997)

    MathSciNet  MATH  Google Scholar 

  44. Ruan, H.Y.: Interactions between two Y-periodic solutions in the (2+1)-dimensional Sawada Kotera equation. Acta Phys. Sin. 53(6), 1617–1622 (2004)

    MATH  Google Scholar 

  45. Yang, Z.H.: A series of exact solutions of (2+1)–dimensional CDGKS equation. Commun. Theor. Phys. 46, 807–811 (2006)

    Google Scholar 

  46. Liu, S.K., Fu, Z.T., Liu, S.D., Zhao, Q.: Jacobi elliptic function expansion method and periodic wave solutions of nonlinear wave equations. Phys. Lett. A 289, 69–74 (2001)

    MathSciNet  MATH  Google Scholar 

  47. Zhou, R.G.: Nonlinearizations of spectral problems of the nonlinear Schrödinger equation and the real-valued mKdV equation. J. Math. Phys. 48, 1 (2007)

    Google Scholar 

  48. Li, C.X.: A hierarchy of coupled Korteweg–de Vries equations and the corresponding finite-dimensional integrable system. J. Phys. Soc. Jpn. 73(2), 327–331 (2004)

    MathSciNet  MATH  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Grant Nos. 11971322, 11861050), the Natural Science Foundation of Inner Mongolia Autonomous Region, China (Grant Nos. 2020LH01010, 2020LH01008 and 2022ZD05) and the Fundamental Research Funds for the Inner Mongolia Normal university (Grant No. 2022JBTD007, 2022JBZD011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhaqilao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wurile, Taogetusang, Li, CX. et al. Rogue periodic waves and hybrid nonlinear waves in the \((2+1)\)-dimensional CDGKS equation. Nonlinear Dyn 111, 13425–13438 (2023). https://doi.org/10.1007/s11071-023-08539-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-08539-y

Keywords

Navigation