Skip to main content
Log in

Vibration characteristics of multi-acoustic metamaterials rotor with geometrical nonlinearity

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

A theoretical research on the vibration characteristics of the multi-acoustic metamaterials rotor with the weak and strong geometrical nonlinearities is presented in this paper. The acoustic metamaterials open a worthy avenue in the propagation of the vibration for the rotor. The multi-metamaterials consist of the rotor dynamic vibration absorbers. The dynamic model of the multi-metamaterials rotor is employed and discretized by the assumed mode method. The solutions of the nonlinear equations are obtained using the harmonic balance method. The finite element model based on the Bernoulli–Euler beam element and numerical integration method is utilized to validate the analytical method. The dispersion relation, bandgaps, and nonlinear characteristics are presented by the theoretical simulations. The influences of the geometrical nonlinearity on the vibration characteristics for the multi-acoustic metamaterials rotor are investigated. The results show that the dispersion curve shifts due to the geometrical nonlinearity. The multi-independent bandgaps are generated by the multi-metamaterials. The twice jumps of the hardening-type nonlinearity exist around every bandgap for the multi-metamaterials rotor. Furthermore, the capability of the localized and miniaturized metamaterials to affect the propagation of the rotor vibration is verified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The data used to support the findings of this study are included within the article.

References

  1. Wen, J., Wang, G., Yu, D., Zhao, H., Liu, Y., Wen, X.: Study on the vibration band gap and vibration attenuation property of phononic crystals. Sci. China Ser. E-Technol. Sci. 51(1), 85–99 (2008)

    Google Scholar 

  2. Liu, Z.: Locally resonant sonic materials. Science 289(5485), 1734–1736 (2000)

    Google Scholar 

  3. Xu, Y., Chen, C., Tian, X.: The existence of simultaneous Bragg and locally resonant band gaps in composite phononic crystal. Chin. Phys. Lett. 30(4), 044301 (2013)

    Google Scholar 

  4. Hao, S., Wu, Z., Li, F., Zhang, C.: Numerical and experimental investigations on the band-gap characteristics of metamaterial multi-span beams. Phys. Lett. A. 383(36), 126029 (2019)

    MATH  Google Scholar 

  5. Liu, P., Zuo, S., Wu, X., Zhang, M.: A method for determining the minimum period number in finite locally resonant phononic crystal beams. J. Vib. Control. 26(9–10), 801–813 (2020)

    MathSciNet  Google Scholar 

  6. Mizukami, K., Kawaguchi, T., Ogi, K., Koga, Y.: Three-dimensional printing of locally resonant carbon-fiber composite metastructures for attenuation of broadband vibration. Compos. Struct. 255, 112949 (2021)

    Google Scholar 

  7. Hussein, M.I., Leamy, M.J., Ruzzene, M.: Dynamics of phononic materials and structures: historical origins, recent progress, and future outlook. Appl. Mech. Rev. 66, 040802 (2014)

    Google Scholar 

  8. Fok, L., Ambati, M., Zhang, X.: Acoustic metamaterials. MRS Bull. 33(10), 931–934 (2008)

    Google Scholar 

  9. Song, H., Ding, X., Cui, Z., Hu, H.: Research progress and development trends of acoustic metamaterials. Molecules 26(13), 4018 (2021)

    Google Scholar 

  10. Chen, S., Fan, Y., Fu, Q., Wu, H., Jin, Y., Zheng, J., Zhang, F.: A review of tunable acoustic metamaterials. Appl. Sci. 8(9), 1480 (2018)

    Google Scholar 

  11. Sepehri, S., Jafari, H., Mashhadi, M.M., Yazdi, M.R.H., Fakhrabadi, M.M.S.: Study of tunable locally resonant metamaterials: effects of spider-web and snowflake hierarchies. Int. J. Solids Struct. 204–205, 81–95 (2020)

    Google Scholar 

  12. Wu, Z., Liu, W., Li, F., Zhang, C.: Band-gap property of a novel elastic metamaterial beam with X-shaped local resonators. Mech. Syst. Signal Proc. 134, 106357 (2019)

    Google Scholar 

  13. Xia, Y., Ruzzene, M., Erturk, A.: Bistable attachments for wideband nonlinear vibration attenuation in a metamaterial beam. Nonlinear Dyn. 102(3), 1285–1296 (2020)

    Google Scholar 

  14. Basta, E., Ghommem, M., Emam, S.: Vibration suppression of nonlinear rotating metamaterial beams. Nonlinear Dyn. 101(1), 311–332 (2020)

    Google Scholar 

  15. Bidhendi, M.R.T.: Band gap transmission in a periodic network of coupled buckled beams. Int. J. Solids Struct. 252, 111766 (2022)

    Google Scholar 

  16. Miranda Jr, E.J.P., Nobrega, E.D., Rodrigues, S.F., Jr., Aranas, C., Dos Santos, J.M.C.: Wave attenuation in elastic metamaterial thick plates: analytical, numerical and experimental investigations. Int. J. Solids Struct. 204, 138–152 (2020)

    Google Scholar 

  17. Jiang, P., Wang, X., Chen, T., Zhu, J.: Band gap and defect state engineering in a multi-stub phononic crystal plate. J. Appl. Phys. 117(15), 154301 (2015)

    Google Scholar 

  18. Dal Poggetto, V.F., Serpa, A.L.: Flexural wave band gaps in a ternary periodic metamaterial plate using the plane wave expansion method. J. Sound Vib. 495, 115909 (2021)

    Google Scholar 

  19. Lu, K., Zhou, G., Gao, N., Li, L., Lei, H., Yu, M.: Flexural vibration bandgaps of the multiple local resonance elastic metamaterial plates with irregular resonators. Appl. Acoust. 159, 107115 (2020)

    Google Scholar 

  20. Zouari, S., Brocail, J., Génevaux, J.M.: Flexural wave band gaps in metamaterial plates: a numerical and experimental study from infinite to finite models. J. Sound Vib. 435, 246–263 (2018)

    Google Scholar 

  21. Ren, T., Liu, C., Li, F., Zhang, C.: Active tunability of band gaps for a novel elastic metamaterial plate. Acta Mech. 231(10), 4035–4053 (2020)

    MathSciNet  MATH  Google Scholar 

  22. Tao, Z., Ren, X., Zhao, A.G., Sun, L., Zhang, Y., Jiang, W., Han, D., Zhang, X.Y., Xie, Y.M.: A novel auxetic acoustic metamaterial plate with tunable bandgap. Int. J. Mech. Sci. 226, 107414 (2022)

    Google Scholar 

  23. Sugino, C., Leadenham, S., Ruzzene, M., Erturk, A.: On the mechanism of bandgap formation in locally resonant finite elastic metamaterials. J. Appl. Phys. 120(13), 134501 (2016)

    Google Scholar 

  24. Sugino, C., Xia, Y., Leadenham, S., Ruzzene, M., Erturk, A.: A general theory for bandgap estimation in locally resonant metastructures. J. Sound Vib. 406, 104–123 (2017)

    Google Scholar 

  25. Bhatt, A., Banerjee, A.: Double attenuation peaks in metamaterial with simultaneous negative mass and stiffness. Phys. Lett. A. 443, 128201 (2022)

    MATH  Google Scholar 

  26. Fang, X., Wen, J., Bonello, B., Yin, J., Yu, D.: Ultra-low and ultra-broad-band nonlinear acoustic metamaterials. Nat. Commun. 8, 1288 (2017)

    Google Scholar 

  27. Casalotti, A., El-Borgi, S., Lacarbonara, W.: Metamaterial beam with embedded nonlinear vibration absorbers. Int. J. Non-Linear Mech. 98, 32–42 (2018)

    Google Scholar 

  28. Bukhari, M., Barry, O.: Spectro-spatial analyses of a nonlinear metamaterial with multiple nonlinear local resonators. Nonlinear Dyn. 99(2), 1539–1560 (2020)

    Google Scholar 

  29. Cveticanin, L., Zukovic, M., Cveticanin, D.: Influence of nonlinear subunits on the resonance frequency band gaps of acoustic metamaterial. Nonlinear Dyn. 93(3), 1341–1351 (2018)

    Google Scholar 

  30. Cveticanin, L., Zukovic, M.: Negative effective mass in acoustic metamaterial with nonlinear mass-in-mass subsystems. Commun. Nonlinear Sci. Numer. Simul. 51, 89–104 (2017)

    MathSciNet  MATH  Google Scholar 

  31. Sheng, P., Fang, X., Wen, J., Yu, D.: Vibration properties and optimized design of a nonlinear acoustic metamaterial beam. J. Sound Vib. 492, 115739 (2021)

    Google Scholar 

  32. Fang, X., Sheng, P., Wen, J., Chen, W., Cheng, L.: A nonlinear metamaterial plate for suppressing vibration and sound radiation. Int. J. Mech. Sci. 228, 107473 (2022)

    Google Scholar 

  33. Chen, Z., Zhou, W., Lim, C.W.: Active control for acoustic wave propagation in nonlinear diatomic acoustic metamaterials. Int. J. Non-Linear Mech. 125, 103535 (2020)

    Google Scholar 

  34. Ye, R., Wang, L., Hou, X., Luo, Z., Han, Q.: Balancing method without trial weights for rotor systems based on similitude scale model. Front. Mech. Eng. 13(4), 571–580 (2018)

    Google Scholar 

  35. Zhao, Q., Yuan, J., Jiang, H., Yao, H., Wen, B.: Vibration control of a rotor system by shear thickening fluid dampers. J. Sound Vib. 494, 115883 (2021)

    Google Scholar 

  36. Qin, H., Zheng, H., Qin, W., Zhang, Z.: Lateral vibration control of a shafting-hull coupled system with electromagnetic bearings. J. Low Freq. Noise Vib. Act. Control. 38(1), 154–167 (2019)

  37. Tehrani, G.G., Dardel, M.: Vibration mitigation of a flexible bladed rotor dynamic system with passive dynamic absorbers. Commun. Nonlinear Sci. Numer. Simul. 69, 1–30 (2019)

    MathSciNet  MATH  Google Scholar 

  38. Yao, H., Wang, Y., Cao, Y., Wen, B.: Multi-stable nonlinear energy sink for rotor system. Int. J. Non-Linear Mech. 118, 103273 (2020)

    Google Scholar 

  39. Nagasaka, I., Liu, J., Ishida, Y.: Forced vibrations of a very slender continuous rotor with geometrical nonlinearity (harmonic and subharmonic resonances). J. Vib. Acoust.-Trans. ASME. 132(2), 021004 (2010)

    Google Scholar 

  40. Ishida, Y., Yamamoto, T.: Linear and Nonlinear Rotordynamics: A Modern Treatment with Applications. Wiley-VCH, Weinheim (2012)

    Google Scholar 

  41. Xu, Q., Niu, J., Yao, H., Zhao, L., Wen, B.: Fluid-induced vibration elimination of a rotor/seal system with the dynamic vibration absorber. Shock Vib. 2018, 1738941 (2018)

    Google Scholar 

  42. Yao, H., Wang, T., Wen, B., Qiu, B.: A tunable dynamic vibration absorber for unbalanced rotor system. J. Mech. Sci. Technol. 32(4), 1519–1528 (2018)

    Google Scholar 

  43. Jiang, J., Kong, X., Chen, C., Zhang, Z.: Dynamic and stability analysis of a cantilever beam system excited by a non-ideal induction motor. Meccanica 56(7), 1675–1691 (2021)

    MathSciNet  Google Scholar 

  44. Xu, Q., Luo, Y., Yao, H., Zhao, L., Wen, B.: Eliminating the fluid-induced vibration and improving the stability of the rotor/seal system using the inerter-based dynamic vibration absorber. Shock Vib. 2019, 1746563 (2019)

    Google Scholar 

  45. Ma, H., Li, H., Niu, H., Song, R., Wen, B.: Numerical and experimental analysis of the first-and second-mode instability in a rotor-bearing system. 84(4), 519–541 (2014)

  46. Den Hartog, J.P.: Mechanical Vibrations. Dover Publications, New York (1985)

    MATH  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Grant number U1708257) and the Scientific Research Fund Project of the Education Department of Liaoning Province (Grant numbers LG201919 and LQGD2020011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qi Xu.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Q., Lv, Y., Liu, Z. et al. Vibration characteristics of multi-acoustic metamaterials rotor with geometrical nonlinearity. Nonlinear Dyn 111, 12817–12833 (2023). https://doi.org/10.1007/s11071-023-08535-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-08535-2

Keywords

Navigation