Skip to main content
Log in

Dynamics of soliton resonances and soliton moleculesfor the AB system in two-layer fluids

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The AB system is a critical component of fluid dynamics, as it is capable of modeling the nonlinear wave motions in two-layer fluids. In this study, we investigate soliton molecules and soliton resonance in the AB system. We employ the Darboux transformation scheme to derive new, explicit expressions for one- to four-order soliton solutions for the system. These solutions include spectrum parameter allowing us to explore novel soliton resonances and soliton molecules in the system. We identify two types of soliton resonances: local and global. We also reveal the evolution dynamics from local to global resonances. Global soliton resonances can be understood as the limit of local soliton resonances. Additionally, based on both the phase parameters, we report the existence of soliton molecules in the AB system. We further discover that parallel soliton molecules without entanglement become global soliton resonances with entanglement as the phase parameters approach zero. This finding holds great significance for the system as it provides theoretical evidence that the system possesses a breather-like wave structure, where two or multiple solitons exhibit mutual entanglement and stable energy. These findings enhance our understanding of the AB system and shed light how to manage and control these stable resonant solitons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Data sharing does not apply to this article as no data sets were generated or analyzed during the current study.

References

  1. Cox, S.M., Matthews, P.C.: Exponential time differencing for stiff systems. J. Comput. Phys. 176, 430–455 (2002)

    MathSciNet  MATH  Google Scholar 

  2. Bamieh, B., Paganini, F., Dahleh, M.A.: Distributed control of spatially invariant systems. IEEE Trans. Autom. Control 47, 1091–1107 (2002)

    MathSciNet  MATH  Google Scholar 

  3. Roy, C.J.: Review of code and solution verification procedures for computational simulation. J. Comput. Phys. 205, 131–156 (2005)

    MATH  Google Scholar 

  4. Shu, C.W.: High order weighted essentially nonoscillatory schemes for convection dominated problems. SIAM Rev. 51, 82–126 (2009)

    MathSciNet  MATH  Google Scholar 

  5. Gottlieb, S., Shu, C.W., Tadmor, E.: Strong stability-preserving high-order time discretization methods. SIAM Rev. 43, 89–112 (2001)

    MathSciNet  MATH  Google Scholar 

  6. Roychowdhury, J.: Analyzing circuits with widely separated time scales using numerical PDE methods. IEEE Trans. Circuits Syst. I-Regul. Pap. 48, 578–594 (2001)

    MathSciNet  MATH  Google Scholar 

  7. Frey, E.: Evolutionary game theory: theoretical concepts and applications to microbial communities. Physica A 389, 4265–4298 (2010)

    MathSciNet  MATH  Google Scholar 

  8. Shang, Y.L.: Lie algebraic discussion for affinity based information diffusion in social networks. Open Phys. 15, 705–711 (2017)

    Google Scholar 

  9. Shang, Y.L.: Consensus formation in networks with neighbor-dependent synergy and observer effect Author links open overlay panel. Commun. Nonlinear Sci. 95, 105632 (2021)

    MATH  Google Scholar 

  10. Moura, S.J., Argomedo, F.B., Klein, R., Mirtabatabaei, A., Krstic, M.: Battery state estimation for a single particle model with electrolyte dynamics. IEEE Trans. Control Syst. Technol. 25, 453–468 (2017)

    Google Scholar 

  11. Nazarkin, A., Abdolvand, A., Chugreev, A.V., Russell, P.S.: Direct observation of self-similarity in evolution of transient stimulated Raman scattering in gas-filled photonic crystal fibers. Phys. Rev. Lett. 105, 173902 (2010)

    Google Scholar 

  12. Kadomtsev, B.B., Petviashvili, V.I.: On the stability of solitary waves in weakly dispersing media. Sov. Phys. Dokl. 15, 639–541 (1970)

    MATH  Google Scholar 

  13. Wazwaz, A.M.: A class of nonlinear fourth order variant of a generalized Camassa–Holm equation with compact and noncompact solutions. Appl. Math. Comput. 165, 485–501 (2005)

    MathSciNet  MATH  Google Scholar 

  14. Ma, Y.L., Wazwaz, A.M., Li, B.Q.: New extended Kadomtsev–Petviashvili equation: multiple soliton solutions, breather, lump and interaction solutions. Nonlinear Dyn. 104, 1581–1594 (2021)

    Google Scholar 

  15. Li, B.Q., Wazwaz, A.M., Ma, Y.L.: Two new types of nonlocal Boussinesq equations in water waves: bright and dark soliton solutions. Chin. J. Phys. 77, 1782–1788 (2022)

    MathSciNet  Google Scholar 

  16. Wazwaz, A.M.: New integrable (2+1)- and (3+1)-dimensional shallow water wave equations: multiple soliton solutions and lump solutions. Int. J. Numer. Methods Heat Fluid Flow 32, 138–149 (2022)

    Google Scholar 

  17. Veerakumar, V., Daniel, M.: Modified Kadomtsev–Petviashvili (MKP) equation and electromagnetic soliton. Math. Comput. Simul. 62, 163–169 (2003)

    MathSciNet  MATH  Google Scholar 

  18. Gao, X.Y., Guo, Y.J., Shan, W.R., Yin, H.M., Du, X.X.: Certain electromagnetic waves in a ferromagnetic film. Commun. Nonlinear Sci. Numer. Simul. 105, 106066 (2021)

    MathSciNet  MATH  Google Scholar 

  19. Li, B.Q.: Loop-like kink breather and its transition phenomena for the Vakhnenko equation arising from high-frequency wave propagation in electromagnetic physics. Appl. Math. Lett. 112, 106822 (2021)

    MathSciNet  MATH  Google Scholar 

  20. Li, B.Q., Ma, Y.L.: Interaction properties between rogue wave and breathers to the Manakov system arising from stationary self-focusing electromagnetic systems. Chaos Soliton Fract. 156, 111832 (2022)

    MathSciNet  MATH  Google Scholar 

  21. Lysaker, M., Lundervold, A., Tai, X.C.: Noise removal using fourth-order partial differential equation with application to medical magnetic resonance images in space and time. IEEE Trans. Image Process. 12, 1579–1590 (2003)

    MATH  Google Scholar 

  22. Zhang, J., van Kempen, E.G.M., Bourdel, T., Khaykovich, L., Cubizolles, J., Chevy, F., Teichmann, M., Tarruell, L., Kokkelmans, S.J.J.M.F., Salomon, C.: P-wave Feshbach resonances of ultracold Li-6. Phys. Rev. A 70, 030702 (2004)

    Google Scholar 

  23. Lee, J., Zhen, B., Chua, S.L., Qiu, W.J., Joannopoulos, J.D., Soljacic, M., Shapira, O.: Observation and differentiation of unique high-q optical resonances near zero wave vector in macroscopic photonic crystal slabs. Phys. Rev. Lett. 109, 067401 (2012)

    Google Scholar 

  24. Chang, W., Ankiewicz, A., Soto-Crespo, J.M., Akhmediev, N.: Dissipative soliton resonances. Phys. Rev. A 78, 023830 (2008)

    Google Scholar 

  25. Li, B.Q., Ma, Y.L.: Solitons resonant behavior for a waveguide directional coupler system in optical fibers. Opt. Quant. Electron. 50, 270 (2018)

    Google Scholar 

  26. Ma, Y.L., Wazwaz, A.M., Li, B.Q.: Novel bifurcation solitons for an extended Kadomtsev–Petviashvili equation in fluids. Phys. Lett. A 413, 127585 (2021)

    MathSciNet  MATH  Google Scholar 

  27. Ma, Y.L., Li, B.Q.: Bifurcation solitons and breathers for the nonlocal Boussinesq equations. Appl. Math. Lett. 124, 107677 (2022)

    MathSciNet  MATH  Google Scholar 

  28. Zheng, Z.J., Ouyang, D.Q., Ren, X.K., Wang, J.Z., Pei, J.H., Ruan, S.C.: 0.33 mJ, 104.3 W dissipative soliton resonance based on a figure-of-9 double-clad Tm-doped oscillator and an all-fiber MOPA system. Photon. Res. 7, 513–517 (2019)

    Google Scholar 

  29. Li, B.Q., Ma, Y.L.: Soliton resonances and soliton molecules of pump wave and Stokes wave for a transient stimulated Raman scattering system in optics. Eur. Phys. J. Plus 137, 1227 (2022)

    Google Scholar 

  30. Ma, Y.L., Li, B.Q.: Soliton resonances for a transient stimulated Raman scattering system. Nonlinear Dyn. 111, 2631–2640 (2022). https://doi.org/10.1007/s11071-022-07945-y

    Article  Google Scholar 

  31. Crasovan, L.C., Kartashov, Y.V., Mihalache, D., Torner, L., Kivshar, Y.S., Perez-Garcia, V.M.: Soliton “molecules’’: robust clusters of spatiotemporal optical solitons. Phys. Rev. E 67, 046610 (2003)

    Google Scholar 

  32. Perez-Garcia, V.M., Vekslerchik, V.: Soliton molecules in trapped vector nonlinear Schrodinger systems. Phys. Rev. E 67, 061804 (2003)

    Google Scholar 

  33. Stratmann, M., Pagel, T., Mitschke, F.: Experimental observation of temporal soliton molecules. Phys. Rev. Lett. 95, 143902 (2005)

    Google Scholar 

  34. Herink, G., Kurtz, F., Jalali, B., Solli, D.R., Ropers, C.: Real-time spectral interferometry probes the internal dynamics of femtosecond soliton molecules. Science 356, 50–53 (2017)

    Google Scholar 

  35. Ma, Y.L., Wazwaz, A.M., Li, B.Q.: A new (3+1)-dimensional Sakovich equation in nonlinear wave motion: Painlevé integrability, multiple solitons and soliton molecules. Qual. Theor. Dyn. Syst. 21, 158 (2022)

    MATH  Google Scholar 

  36. Li, B.Q., Ma, Y.L.: Soliton resonances and soliton molecules for the Lakshmanan-Porsezian-Daniel system in optical fibers. Nonlinear Dyn. 111, 6689–6699 (2023). https://doi.org/10.1007/s11071-022-08195-8

    Article  Google Scholar 

  37. De Verdiere, A.C., Huck, T.: Baroclinic instability: an oceanic wavemaker for interdecadal variability. J. Phys. Oceanogr. 29, 893–910 (1999)

    MathSciNet  Google Scholar 

  38. Chang, E.K.M.: Wave packets and life cycles of troughs in the upper troposphere: examples from the Southern Hemisphere summer season of 1984/85. Mon. Weather Rev. 128, 25–50 (2000)

    Google Scholar 

  39. Wu, X.D., Cahl, D., Voulgaris, G.: Effects of wind stress and surface cooling on cross-shore exchange. J. Phys. Oceanogr. 48, 2627–2647 (2018)

    Google Scholar 

  40. Juricke, S., Danilov, S., Koldunov, N., Oliver, M., Sidorenko, D.: Ocean kinetic energy backscatter parametrization on unstructured grids: impact on global eddy-permitting simulations. J. Adv. Model. Earth Syst. (2020). https://doi.org/10.1029/2019MS001855

    Article  Google Scholar 

  41. Vakakis, A.F., Gendelman, O.V., Bergman, L.A., Michael, M.D., Kerschen, G., Lee, Y.S.: Nonlinear Targeted Energy Transfer in Mechanical and Structural Systems. Springer, Berlin (2008)

    MATH  Google Scholar 

  42. Fang, Z.W., Zhang, Y.W., Li, X., Ding, H., Chen, L.Q.: Integration of a nonlinear energy sink and a giant magnetostrictive energy harvester. J. Sound Vib. 391, 35–49 (2017)

    Google Scholar 

  43. Fang, Z.W., Zhang, Y.W., Li, X., Ding, H., Chen, L.Q.: Complexification-averaging analysis on a giant magnetostrictive harvester integrated with a nonlinear energy sink. J Vibr. Acoust. 140, 46 (2018)

    Google Scholar 

  44. Li, X., Zhang, Y.W., Ding, H., Chen, L.Q.: Dynamics and evaluation of a nonlinear energy sink integrated by a piezoelectric energy harvester under a harmonic excitation. J Vibr. Control 25, 851–867 (2019)

    MathSciNet  Google Scholar 

  45. Li, X., Mojahed, A., Chen, L.Q., Bergman, L.A., Vakakis, A.F.: Shock response mitigation of a large-scale structure by modal energy redistribution facilitated by a strongly nonlinear absorber. Acta Mech. Sin. 38, 121464 (2022)

    MathSciNet  Google Scholar 

  46. Ma, Y.L.: Interaction and energy transition between the breather and rogue wave for a generalized nonlinear Schrödinger system with two higher-order dispersion operators in optical fibers. Nonlinear Dyn. 97, 95–105 (2019)

    MATH  Google Scholar 

  47. Pedlosky, J.: Geophysical Fluid Dynamics, 2nd edn. Springer, Berlin (1987)

  48. Gilman, P.A., Fox, P.A.: Joint instability of latitudinal differential rotation and toroidal magnetic fields below the solar convection zone. II. Instability for toroidal fields that have a node between the equator and pole. Astrophys. J. 510, 1018–1044 (1999)

    Google Scholar 

  49. Nayakshin, S., Kazanas, D., Kallman, T.R.: Thermal instability and photoionized X-ray reflection in accretion disks. Astrophys. J. 537, 833–852 (2000)

    Google Scholar 

  50. Gibbon, J.D., McGuinness, M.J.: Amplitude equations at the critical points of unstable dispersive physical systems. Proc. R. Soc. Lond. A 377, 185–219 (1981)

    MathSciNet  MATH  Google Scholar 

  51. Kamchatnovt, A.M., Pavlovf, M.V.: Periodic solutions and Whitham equations for the AB system. J. Phys. A Math. Gen. 28, 3279–3288 (1995)

    MathSciNet  Google Scholar 

  52. Guo, R., Hao, H.Q., Zhang, L.L.: Dynamic behaviors of the breather solutions for the AB system in fluid mechanics. Nonlinear Dyn. 74, 701–709 (2013)

    MathSciNet  Google Scholar 

  53. Wang, X., Li, Y.Q., Huang, F., Chen, Y.: Rogue wave solutions of AB system. Commun. Nonlinear Sci. Numer. Simul. 20, 434–442 (2015)

    MathSciNet  MATH  Google Scholar 

  54. Wen, X.Y., Yan, Z.Y.: Modulational instability and higher-order rogue waves with parameters modulation in a coupled integrable AB system via the generalized Darboux transformation. Chaos 25, 123115 (2015)

    MathSciNet  MATH  Google Scholar 

  55. Su, J.J., Zhang, S.: Nth-order rogue waves for the AB system via the determinants. Appl. Math. Lett. 112, 106714 (2021)

    MATH  Google Scholar 

  56. Wang, L., Wang, Z.Q., Zhang, J.H., Qi, F.H., Li, M.: Stationary nonlinear waves, superposition modes and modulational instability characteristics in the AB system. Nonlinear Dyn. 86, 185–196 (2016)

    Google Scholar 

  57. Zhang, G.Q., Yan, Z.Y., Wen, X.Y.: Multi-dark-dark solitons of the integrable repulsive AB system via the determinants. Chaos 27, 083110 (2017)

    MathSciNet  MATH  Google Scholar 

  58. Lax, P.D.: Integrals of nonlinear equations of evolution and solitary waves. Commun. Pure Appl. Math. 21, 467–490 (1968)

    MathSciNet  MATH  Google Scholar 

  59. Gu, C.H.: Soliton Theory and Its Applications. Zhejiang Science And Technology Press, Hangzhou (1990)

    Google Scholar 

  60. Willox, R., Tokihiro, T., Satsuma, J.: Darboux and binary Darboux transformations for the nonautonomous discrete KP equation. J. Math. Phys. 38, 6455 (1997)

    MathSciNet  MATH  Google Scholar 

  61. Guo, B.L., Ling, L.M., Liu, Q.P.: Nonlinear Schrödinger equation: generalized Darboux transformation and rogue wave solutions. Phys. Rev. E 85, 026607 (2012)

    Google Scholar 

  62. Li, B.Q., Ma, Y.L.: Lax pair, Darboux transformation and Nth-order rogue wave solutions for a (2+1)-dimensional Heisenberg ferromagnetic spin chain equation. Comput. Math. Appl. 77, 514–524 (2019)

    MathSciNet  MATH  Google Scholar 

  63. Li, B.Q., Ma, Y.L.: N-order rogue waves and their novel colliding dynamics for a transient stimulated Raman scattering system arising from nonlinear optics. Nonlinear Dyn. 101, 2449–2461 (2020)

  64. Li, B.Q., Ma, Y.L.: Extended generalized Darboux transformation to hybrid rogue wave and breather solutions for a nonlinear Schrödinger equation. Appl. Math. Comput. 386, 125469 (2020)

    MathSciNet  MATH  Google Scholar 

  65. Li, B.Q., Ma, Y.L.: The complex short pulse equation: multi-folded rogue waves and phase transition. Appl. Math. Lett. 135, 108399 (2023)

    MATH  Google Scholar 

  66. Ma, Y.L., Li, B.Q.: Kraenkel–Manna–Merle saturated ferromagnetic system: Darboux transformation and loop-like soliton excitations. Chaos Soliton Fract. 159, 112179 (2022)

    MathSciNet  MATH  Google Scholar 

  67. Li, B.Q., Ma, Y.L.: A ‘firewall’ effect during the rogue wave and breather interactions to the Manakov system. Nonlinear Dyn. (2023). https://doi.org/10.1007/s11071-022-07878-6

    Article  Google Scholar 

  68. Ablowitz, M.J., Kaup, D.J., Newell, A.C., Segur, H.: Nonlinear-evolution equations of physical significance. Phys. Rev. Lett. 31, 125–127 (1973)

    MathSciNet  MATH  Google Scholar 

  69. Peskin, C.S.: Numerical analysis of blood flow in the heart. J. Comput. Phys. 25, 220–252 (1977)

  70. Cushman-Roisin, B., Esenkov, O.E., Mathias, B.J.: A particle-in-cell method for the solution of two-layer shallow-water equations. Int. J. Numer. Method Fluid. 22, 515–540 (2000)

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

Y-LM contributed to conceptualization, validation, writing—review and editing, and methodology and provided software. B-QL was involved in methodology, formal analysis, data curation and writing—original draft.

Corresponding author

Correspondence to Bang-Qing Li.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interests with publication of this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, YL., Li, BQ. Dynamics of soliton resonances and soliton moleculesfor the AB system in two-layer fluids. Nonlinear Dyn 111, 13327–13341 (2023). https://doi.org/10.1007/s11071-023-08529-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-08529-0

Keywords

Navigation