Skip to main content
Log in

Effects of amplitude modulation on mixed-mode oscillations in the forced van der Pol equation

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Mixed-mode dynamics is a complex type of dynamical behavior in the classic van der Pol equation with slow forcings. The present paper aims to report the effects of amplitude modulation on mixed-mode dynamics. Typically, interesting dynamical characteristics can be observed in the mixed-mode oscillations (MMOs) when the amplitude modulation is introduced. That is, the quasi-static processes of MMOs exhibit distinct oscillations, while the active phases of MMOs remain largely the same. We investigate these dynamical characteristics by frequency conversion fast–slow analysis. It is found that they are related to the evolution patterns of the amplitude-modulated forcing. In particular, the vibration frequency of the quasi-static processes of MMOs is decided by the modulation frequency, and the transition of MMOs by the modulation amplitude. Our results enrich the routes to fast–slow dynamics and deepen the understanding of dynamical mechanisms of MMOs. Our analysis and treatment provide an important reference for exploring mixed-mode dynamics induced by amplitude modulation in other nonlinear systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Gukenheimer, J., Holmes, P.: Nonlinear Oscillations. Dynamical Systems and Bifurcation of Vector Field, Springer, New York (1983)

    Google Scholar 

  2. Guckenheimer, J.: Dynamics of the van der Pol equation. IEEE Trans. Circuits Syst. 27, 983–989 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  3. Holmes, P.J., Rand, D.A.: Bifurcations of the forced van der Pol oscillator. Q. Appl. Math. 35, 495–509 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  4. Xu, J.X., Jiang, J.: The global bifurcation characteristics of the forced van der Pol Oscillator. Chaos Soliton Fract. 7, 3–19 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  5. Padín, M.S., Robbio, F.I., Moiola, J.L., Chen, G.R.: On limit cycle approximations in the van der Pol oscillator. Chaos Soliton Fract. 23, 207–220 (2005)

    Article  MATH  Google Scholar 

  6. Cai, C.C., Shen, Y.J., Wen, S.F.: Primary and super-harmonic simultaneous resonance of van der Pol oscillator. Int. J. Non-Lin. Mech. 147, 104237 (2022)

    Article  Google Scholar 

  7. Amore, P.: Computing the solutions of the van der Pol equation to arbitrary precision. Phys. D 435, 133279 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  8. van der Pol, B.: On relaxation-oscillations. Philos. Mag. 2, 978–992 (1926)

    Article  Google Scholar 

  9. Kuehn, C.: Multiple Time Scale Dynamics. Springer, Berlin (2015)

    Book  MATH  Google Scholar 

  10. Benoit, E., Callot, J.L., Diener, F., Diener, M.: Chasse au canard. Collect. Math. 32, 37–119 (1981)

    MathSciNet  MATH  Google Scholar 

  11. Szmolyan, P., Wechselberger, M.: Canards in \(\mathbb{R} ^3\). J. Differ. Equ. 177, 419–453 (2001)

    Article  MATH  Google Scholar 

  12. Wechselberger, M.: Existence and bifurcation of canards in \(\mathbb{R} ^3\) in the case of a folded node. SIAM J. Appl. Dyn. Syst. 4, 101–139 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  13. Qin, B.W., Chung, K.W., Algaba, A., Rodríguez-Luis, A.J.: Asymptotic expansions for a degenerate canard explosion. Phys. D 418, 132841 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  14. Krupa, M., Popovi\(\acute{c}\), N., Kopell, N.: Mixed-mode oscillations in three time-scale systems: a prototypical example. SIAM J. Appl. Dyn. Syst. 7, 361-420 (2008)

  15. Desroches, M., Krupa, M., Rodrigues, S.: Spike-adding in parabolic bursters: the role of folded-saddle canards. Phys. D 331, 58–70 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  16. Chowdhury, P.R., Banerjee, M., Petrovskii, S.: Canards, relaxation oscillations, and pattern formation in a slow-fast ratio-dependent predator-prey system. Appl. Math. Model. 109, 519–535 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  17. Guckenheimer, J., Hoffman, K., Weckesser, W.: The forced van der Pol equation I: the slow flow and its bifurcations. SIAM J. Appl. Dyn. Syst. 2, 1–35 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  18. Bold, K., Edwards, C., Guckenheimer, J., Guharay, S., Hoffman, K., Hubbard, J., Oliva, R., Weckesser, W.: The forced van der Pol equation II: canards in the reduced system. SIAM J. Appl. Dyn. Syst. 2, 570–608 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  19. Han, X.J., Bi, Q.S.: Slow passage through canard explosion and mixed-mode oscillations in the forced van der Pol’s equation. Nonlinear Dyn. 68, 275–283 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  20. Han, X.J., Bi, Q.S.: Complex bursting patterns in van der Pol system with two slowly changing external forcings. Sci. China Tech. Sci. 55, 702–708 (2012)

    Article  Google Scholar 

  21. Makouo, L., Woafo, P.: Experimental observation of bursting patterns in van der Pol oscillators. Chaos Soliton Fract. 94, 95–101 (2017)

    Article  Google Scholar 

  22. García, R.: Amplitude Modulation Atomic Force Microscopy. Wiley, Weinheim (2010)

    Book  Google Scholar 

  23. Garcia, S.M., Kopuchian, C., Mindlin, G.B., Fuxjager, M.J., Tubaro, P.L., Goller, F.: Evolution of vocal diversity through morphological adaptation without vocal learning or complex neural control. Curr. Biol. 27, 2677–2683 (2017)

    Article  Google Scholar 

  24. Vasudevan, K.: Analog Communications: Problems and Solutions. Springer, Cham (2021)

    Book  Google Scholar 

  25. Gandhimathi, V., Rajasekar, S.: Vibrational and stochastic resonances in two coupled overdamped anharmonic oscillators driven by an amplitude modulated force. Phys. Scr. 76, 693–698 (2007)

    Article  Google Scholar 

  26. Meenakshi, M., Athisayanathan, S., Chinnathambi, V., Rahasejar, S.: Analytical estimates of the effect of amplitude modulated signal in nonlinearly damped duffing-vander pol oscillator. Chin. J. Phys. 55, 2208–2217 (2017)

    Article  MathSciNet  Google Scholar 

  27. Pyragas, K., Novicenko, V.: Phase reduction of a limit cycle oscillator perturbed by a strong amplitude-modulated high-frequency force. Phys. Rev. E 92, 012910 (2015)

    Article  MathSciNet  Google Scholar 

  28. Gonzalez, N., Jimenez, N., Redondo, J., Roig, B., Pico, R., Sanchez-Morcillo, V., Konofagou, E., Camarena, F.: Nonlinear effects in the radiation force generated by amplitude-modulated focused beams. AIP Conf. Proc. 1481, 112–118 (2012)

    Article  Google Scholar 

  29. Song, J., Han, X.J., Zou, Y., Jiang, Y.D., Bi, Q.S.: Relaxation oscillation patterns induced by amplitude-modulated excitation in the Duffing system. Chaos Soliton Fract. 164, 112555 (2022)

    Article  MATH  Google Scholar 

  30. Izhikevich, E.M.: Neural excitability, spiking and bursting. Int. J. Bifurcat. Chaos 10, 1171–1266 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  31. Han, X.J., Wei, M.K., Bi, Q.S., Kurths, J.: Obtaining amplitude-modulated bursting by multiple-frequency slow parametric modulation. Phys. Rev. E 97, 012202 (2018)

  32. Han, X.J., Bi, Q.S., Ji, P., Kurths, J.: Fast-slow analysis for parametrically and externally excited systems with two slow rationally related excitation frequencies. Phys. Rev. E 92, 012911 (2015)

Download references

Acknowledgements

The authors express their gratitude to the anonymous reviewers whose comments and suggestions have helped improve this paper.

Funding

This work is supported by the National Natural Science Foundation of China (Grant Nos. 12072132 and 12272150).

Author information

Authors and Affiliations

Authors

Contributions

XH contributed to conceptualization, methodology, numerical simulations, writing—original draft, supervision, and project administration. QB performed writing—review and editing, and validation.

Corresponding author

Correspondence to Xiujing Han.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, X., Bi, Q. Effects of amplitude modulation on mixed-mode oscillations in the forced van der Pol equation. Nonlinear Dyn 111, 12921–12930 (2023). https://doi.org/10.1007/s11071-023-08517-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-08517-4

Keywords

Navigation