Skip to main content
Log in

Uncertainty quantification and sensitivity analysis of a hippocampal CA3 pyramidal neuron model under electromagnetic induction

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Due to the huge storage capacity and complex nonlinearity associated with the memristor or memory resistor, various modified single-compartment neuron models with a flux controlled memristor for exploring the influence of electromagnetic induction on dynamical response, including spiking patterns, have been presented. This paper generalizes the relevant investigation of the electrophysiology of a hippocampal CA3 pyramidal neuron by an electromagnetic induction-based variant of the two-compartment Pinsky–Rinzel neuron model. Our emphasis was on the uncertainty quantification and sensitivity analysis of ionic channel conductivities under the electromagnetic induction effect when the two-compartment model is near the Hopf bifurcation point. It was found that the quantities of interest (QoI), such as average interspike interval and spike frequency, mainly depend on the conductivities of calcium and calcium-activated potassium channels and their mutual interactions within a periodic bursting electrical mode. In the case of the aperiodic bursting electrical mode, these QoIs are most sensitive to the conductivities of potassium delayed rectifier, calcium, calcium-activated potassium channels, and their mutual interactions. Our computational results demonstrate that the electrical activities of the hippocampal CA3 pyramidal neuron model under the influence of magnetic flux are sensitive to the transition between complex periodic and aperiodic bursting electrical modes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data availability statement

The data used to generate the numerical results of the current work are available from the corresponding author on request.

References

  1. Kim, H., Sah, M.P., Yang, C., Cho, S., Chua, L.O.: Memristor emulator for memristor circuit applications. IEEE Trans. Circuits Syst. I Regul. Pap. 59(10), 2422–2431 (2012). https://doi.org/10.1109/TCSI.2012.2188957

    Article  MathSciNet  MATH  Google Scholar 

  2. Hu, C., Zuo, H., Li, Y.: Effects of radiofrequency electromagnetic radiation on neurotransmitters in the brain. Front. Public Health. (2021). https://doi.org/10.3389/fpubh.2021.691880

    Article  Google Scholar 

  3. Taki, M., Watanabe, S.: Biological and health effects of exposure to electromagnetic field from mobile communications systems. IATSS Res. 25(2), 40–50 (2001). https://doi.org/10.1016/S0386-1112(14)60069-8

    Article  Google Scholar 

  4. Capelli, E., Torrisi, F., Venturini, L., Granato, M., Fassina, L., Lupo, G.F.D., Ricevuti, G.: Low-frequency pulsed electromagnetic field is able to modulate miRNAs in an experimental cell model of Alzheimer’s disease. J. Healthc. Eng. (2017). https://doi.org/10.1155/2017/2530270

    Article  Google Scholar 

  5. Fisher, R., Salanova, V., Witt, T.: Electrical stimulation of the anterior nucleus of thalamus for treatment of refractory epilepsy. Epilepsia 51(5), 899–908 (2010). https://doi.org/10.1111/j.1528-1167.2010.02536.x

    Article  Google Scholar 

  6. Qu, L., Du, L., Hu, H., Cao, Z., Deng, Z.: Pattern control of external electromagnetic stimulation to neuronal networks. Nonlinear Dyn. 102(4), 2739–2757 (2020). https://doi.org/10.1007/s11071-020-06076-6

    Article  Google Scholar 

  7. Lin, H., Wang, C., Cui, L., Sun, Y., Zhang, X., Yao, W.: Hyperchaotic memristive ring neural network and application in medical image encryption. Nonlinear Dyn. 110(1), 841–855 (2022). https://doi.org/10.1007/s11071-022-07630-0

    Article  Google Scholar 

  8. Li, K., Bao, H., Li, H., Ma, J., Hua, Z., Bao, B.: Memristive Rulkov neuron model with magnetic induction effects. IEEE Trans. Ind. Inform. 18(3), 1726–1736 (2021). https://doi.org/10.1109/TII.2021.3086819

    Article  Google Scholar 

  9. Lin, H., Wang, C., Cui, L., Sun, Y., Xu, C., Yu, F.: Brain-like initial-boosted hyperchaos and application in biomedical image encryption. IEEE Trans. Ind. Inform. (2022). https://doi.org/10.1109/TII.2022.3155599

    Article  Google Scholar 

  10. Lin, H., Wang, C., Xu, C., Zhang, X., Iu, H.H.: A memristive synapse control method to generate diversified multi-structure chaotic attractors. IEEE Trans. Comput. Aided Des. Integr. Circuit Syst. (2022). https://doi.org/10.1109/TCAD.2022.3186516

    Article  Google Scholar 

  11. Chua, L.: Memristor-the missing circuit element. IEEE Trans. Circuit Theory 18(5), 507–519 (1971). https://doi.org/10.1109/TCT.1971.1083337

    Article  Google Scholar 

  12. Strukov, D.B., Snider, G.S., Stewart, D.R., Williams, R.S.: The missing memristor found. Nature 453(7191), 80–83 (2008). https://doi.org/10.1038/nature06932

    Article  Google Scholar 

  13. Joglekar, Y.N., Wolf, S.J.: The elusive memristor: properties of basic electrical circuits. Eur. J. Phys. 30(4), 661–675 (2009). https://doi.org/10.1088/0143-0807/30/4/001

    Article  MATH  Google Scholar 

  14. Rajagopal, K., Jafari, S., Moroz, I., Karthikeyan, A., Srinivasan, A.: Noise induced suppression of spiral waves in a hybrid Fitzhugh–Nagumo neuron with discontinuous resetting. Chaos (2021). https://doi.org/10.1063/5.0059175

    Article  MathSciNet  MATH  Google Scholar 

  15. Zhan, F., Liu, S.: Response of electrical activity in an improved neuron model under electromagnetic radiation and noise. Front. Comput. Neurosci. (2017). https://doi.org/10.3389/fncom.2017.00107

    Article  Google Scholar 

  16. Wang, Y., Ma, J., Xu, Y., Wu, F., Zhou, P.: The electrical activity of neurons subject to electromagnetic induction and gaussian white noise. Int. J. Bifurcat. Chaos 27(02), 1750030 (2017). https://doi.org/10.1142/S0218127417500304

    Article  MathSciNet  MATH  Google Scholar 

  17. Lv, M., Wang, C., Ren, G., Ma, J., Song, X.: Model of electrical activity in a neuron under magnetic flow effect. Nonlinear Dyn. 85(3), 1479–1490 (2016). https://doi.org/10.1007/s11071-016-2773-6

    Article  Google Scholar 

  18. Lv, M., Ma, J.: Multiple modes of electrical activities in a new neuron model under electromagnetic radiation. Neurocomputing 205(C), 375–381 (2016). https://doi.org/10.1016/j.neucom.2016.05.004

    Article  Google Scholar 

  19. Lu, L., Jia, Y., Liu, W., Yang, L.: Mixed stimulus-induced mode selection in neural activity driven by high and low frequency current under electromagnetic radiation. Complexity (2017). https://doi.org/10.1155/2017/7628537

    Article  MathSciNet  MATH  Google Scholar 

  20. Wu, J., Jin, M., Qiao, Q.: Modeling electrical stimulation of retinal ganglion cell with optimizing additive noises for reducing threshold and energy consumption. BioMed. Eng. Online (2017). https://doi.org/10.1186/s12938-017-0333-z

    Article  Google Scholar 

  21. Fu, Y.-X., Kang, Y.-M., Xie, Y.: Subcritical Hopf bifurcation and stochastic resonance of electrical activities in neuron under electromagnetic induction. Front. Comput. Neurosci. (2018). https://doi.org/10.3389/fncom.2018.00006

    Article  Google Scholar 

  22. Kafraj, M.S., Parastesh, F., Jafari, S.: Firing patterns of an improved Izhikevich neuron model under the effect of electromagnetic induction and noise. Chaos, Solitons Fractals 137, 109782 (2020). https://doi.org/10.1016/j.chaos.2020.109782

    Article  MathSciNet  Google Scholar 

  23. Yang, Y., Ma, J., Xu, Y., Jia, Y.: Energy dependence on discharge mode of Izhikevich neuron driven by external stimulus under electromagnetic induction. Cogn. Neurodyn. 15(2), 265–277 (2021). https://doi.org/10.1007/s11571-020-09596-4

    Article  Google Scholar 

  24. Thompson, C.L., Pathak, S.D., Jeromin, A., Ng, L.L., MacPherson, C.R., Mortrud, M.T., Cusick, A., Riley, Z.L., Sunkin, S.M., Bernard, A., Puchalski, R.B., Gage, F.H., Jones, A.R., Bajic, V.B., Hawrylycz, M.J., Lein, E.S.: Genomic anatomy of the hippocampus. Neuron 60(6), 1010–1021 (2008). https://doi.org/10.1016/j.neuron.2008.12.008

    Article  Google Scholar 

  25. Eichenbaum, H.: The hippocampus as a cognitive map ... of social space. Neuron 87(1), 9–11 (2015). https://doi.org/10.1016/j.neuron.2015.06.013

    Article  Google Scholar 

  26. Raus Balind, S., Magó, Á., Ahmadi, M., Kis, N., Varga-Németh, Z., Lőrincz, A., Makara, J.K.: Diverse synaptic and dendritic mechanisms of complex spike burst generation in hippocampal CA3 pyramidal cells. Nat. Commun. 10(1), 1–15 (2019). https://doi.org/10.1038/s41467-019-09767-w

    Article  Google Scholar 

  27. Traub, R.D., Wong, R.K., Miles, R., Michelson, H.: A model of a CA3 hippocampal pyramidal neuron incorporating voltage-clamp data on intrinsic conductances. J. Neurophysiol. 66(2), 635–650 (1991). https://doi.org/10.1152/jn.1991.66.2.635

    Article  Google Scholar 

  28. Pinsky, P.F., Rinzel, J.: Intrinsic and network rhythmogenesis in a reduced Traub model for CA3 neurons. J. Comput. Neurosci. 1(1), 39–60 (1994). https://doi.org/10.1007/BF00962717

    Article  Google Scholar 

  29. Mäki-Marttunen, T., Halnes, G., Devor, A., Metzner, C., Dale, A.M., Andreassen, O.A., Einevoll, G.T.: A stepwise neuron model fitting procedure designed for recordings with high spatial resolution: application to layer 5 pyramidal cells. J. Neurosci. Methods 293, 264–283 (2018). https://doi.org/10.1016/j.jneumeth.2017.10.007

    Article  Google Scholar 

  30. Hay, E., Hill, S., Schürmann, F., Markram, H., Segev, I.: Models of neocortical layer 5b pyramidal cells capturing a wide range of dendritic and perisomatic active properties. PLoS Comput. Biol. 7(7), 1002107 (2011). https://doi.org/10.1371/journal.pcbi.1002107

    Article  Google Scholar 

  31. Atherton, L.A., Prince, L.Y., Tsaneva-Atanasova, K.: Bifurcation analysis of a two-compartment hippocampal pyramidal cell model. J. Comput. Neurosci. 41(1), 91–106 (2016). https://doi.org/10.1007/s10827-016-0606-8

    Article  MathSciNet  Google Scholar 

  32. Ghori, M.B., Kang, Y., Chen, Y.: Emergence of stochastic resonance in a two-compartment hippocampal pyramidal neuron model. J. Comput. Neurosci. 50(2), 217–240 (2022). https://doi.org/10.1007/s10827-021-00808-2

    Article  MathSciNet  MATH  Google Scholar 

  33. Reznik, R.I., Barreto, E., Sander, E., So, P.: Effects of polarization induced by non-weak electric fields on the excitability of elongated neurons with active dendrites. J. Comput. Neurosci. 40(1), 27–50 (2016). https://doi.org/10.1007/s10827-015-0582-4

    Article  MathSciNet  Google Scholar 

  34. Wei, X., Chen, Y., Lu, M., Deng, B., Yu, H., Wang, J., Che, Y., Han, C.: An ephaptic transmission model of ca3 pyramidal cells: An investigation into electric field effects. Cogn. Neurodyn. 8(3), 177–197 (2014). https://doi.org/10.1007/s11571-013-9269-6

    Article  Google Scholar 

  35. Sætra, M.J., Einevoll, G.T., Halnes, G.: An electrodiffusive, ion conserving Pinsky–Rinzel model with homeostatic mechanisms. PLoS Comput. Biol. 16(4), 1–36 (2020). https://doi.org/10.1371/journal.pcbi.1007661

    Article  Google Scholar 

  36. Torres Valderrama, A., Witteveen, J., Navarro, M., Blom, J.: Uncertainty propagation in nerve impulses through the action potential mechanism. J. Math. Neurosci. 5(1), 1–9 (2015). https://doi.org/10.1186/2190-8567-5-3

    Article  MathSciNet  MATH  Google Scholar 

  37. Lojić Kapetanović, A., Šušnjara, A., Poljak, D.: Stochastic analysis of the electromagnetic induction effect on a neuron’s action potential dynamics. Nonlinear Dyn. 105(4), 3585–3602 (2021). https://doi.org/10.1007/s11071-021-06762-z

    Article  Google Scholar 

  38. Hodgkin, A.L., Huxley, A.F.: A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117(4), 500–544 (1952). https://doi.org/10.1113/jphysiol.1952.sp004764

    Article  Google Scholar 

  39. Rezvani-Ardakani, S., Mohammad-Ali-Nezhad, S., Ghasemi, R.: Epilepsy control using a fixed time integral super twisting sliding mode control for Pinsky–Rinzel pyramidal model through ion channels with optogenetic method. Comput. Methods Programs Biomed. 195, 105665 (2020). https://doi.org/10.1016/j.cmpb.2020.105665

    Article  Google Scholar 

  40. Chen, Y., Ghori, M.B., Kang, Y.: Bifurcation analysis of brain connectivity regulated neural oscillations in schizophrenia. Int. J. Bifurcat. Chaos. 32(11), 2250167 (2022). https://doi.org/10.1142/S021812742250167X

    Article  MathSciNet  MATH  Google Scholar 

  41. Saturnino, G.B., Madsen, K.H., Thielscher, A.: Electric field simulations for transcranial brain stimulation using FEM: an efficient implementation and error analysis. J. Neural Eng. 16(6), 066032 (2019). https://doi.org/10.1088/1741-2552/ab41ba

    Article  Google Scholar 

  42. Bao, B.C., Liu, Z., Xu, J.P.: Steady periodic memristor oscillator with transient chaotic behaviours. Electron. Lett. 46(3), 228–230 (2010). https://doi.org/10.1049/el.2010.3114

    Article  Google Scholar 

  43. Wu, F., Ma, J., Zhang, G.: A new neuron model under electromagnetic field. Appl. Math. Comput. 347, 590–599 (2019). https://doi.org/10.1016/j.amc.2018.10.087

    Article  MathSciNet  MATH  Google Scholar 

  44. Wang, C., Tang, J., Ma, J.: Minireview on signal exchange between nonlinear circuits and neurons via field coupling. Eur. Phys. J. Spec. Top. 228, 1907–1924 (2019). https://doi.org/10.1140/epjst/e2019-800193-8

    Article  Google Scholar 

  45. Shampine, L.F., Reichelt, M.W.: The MATLAB ODE suite. SIAM J. Sci. Comput. 18(1), 1–22 (1997). https://doi.org/10.1137/S1064827594276424

    Article  MathSciNet  MATH  Google Scholar 

  46. Ermentrout, B., Mahajan, A.: Simulating, analyzing, and animating dynamical systems: a guide to XPPAUT for researchers and students. Appl. Mech. Rev. 56(4), 53–53 (2003). https://doi.org/10.1137/1.9780898718195

    Article  Google Scholar 

  47. Kepecs, A., Wang, X.-J.: Analysis of complex bursting in cortical pyramidal neuron models. Neurocomputing 32, 181–187 (2000). https://doi.org/10.1016/S0925-2312(00)00162-4

    Article  Google Scholar 

  48. Harenberg, D., Marelli, S., Sudret, B., Winschel, V.: Uncertainty quantification and global sensitivity analysis for economic models. Quant. Econom. 10(1), 1–41 (2019). https://doi.org/10.3982/QE866

    Article  MathSciNet  MATH  Google Scholar 

  49. Saltelli, A.: Sensitivity analysis for importance assessment. Risk Anal. 22(3), 579–590 (2002). https://doi.org/10.1111/0272-4332.00040

    Article  Google Scholar 

  50. Sudret, B.: Global sensitivity analysis using polynomial chaos expansions. Reliab. Eng. Syst. Saf. 93(7), 964–979 (2008). https://doi.org/10.1016/j.ress.2007.04.002. (Bayesian Networks in Dependability)

    Article  Google Scholar 

  51. Sobol’, I.M.: Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates. Math. Comput. Simul. 55(1), 271–280 (2001). https://doi.org/10.1016/S0378-4754(00)00270-6. (The Second IMACS Seminar on Monte Carlo Methods)

    Article  MathSciNet  MATH  Google Scholar 

  52. Marelli, S., Sudret, B.: UQLab: A Framework for Uncertainty Quantification in Matlab, pp. 2554–2563 (2014). https://doi.org/10.1061/9780784413609.257

  53. Marino, S., Hogue, I.B., Ray, C.J., Kirschner, D.E.: A methodology for performing global uncertainty and sensitivity analysis in systems biology. J. Theor. Biol. 254(1), 178–196 (2008). https://doi.org/10.1016/j.jtbi.2008.04.011

  54. Longtin, A.: Stochastic resonance in neuron models. J. Stat. Phys. 70(1), 309–327 (1993). https://doi.org/10.1007/BF01053970

    Article  MATH  Google Scholar 

  55. Lee, S.-G., Kim, S.: Parameter dependence of stochastic resonance in the stochastic Hodgkin–Huxley neuron. Phys. Rev. E 60(1), 826 (1999). https://doi.org/10.1103/PhysRevE.60.826

    Article  Google Scholar 

  56. Danziger, Z., Grill, W.M.: A neuron model of stochastic resonance using rectangular pulse trains. J. Comput. Neurosci. 38(1), 53–66 (2015). https://doi.org/10.1007/s10827-014-0526-4

    Article  MathSciNet  MATH  Google Scholar 

  57. Pathmanathan, P., Cordeiro, J.M., Gray, R.A.: Comprehensive uncertainty quantification and sensitivity analysis for cardiac action potential models. Front. Physiol. 10, 721 (2019). https://doi.org/10.3389/fphys.2019.00721

    Article  Google Scholar 

  58. Ghori, M.B., Naik, P.A., Zu, J., Eskandari, Z., Naik, M.: Global dynamics and bifurcation analysis of a fractional-order SEIR epidemic model with saturation incidence rate. Math. Methods. Appl. Sci. 45(7), 3665–3688 (2022). https://doi.org/10.1002/mma.8010

    Article  MathSciNet  Google Scholar 

  59. Zi, Z.: Sensitivity analysis approaches applied to systems biology models. IET Syst. Biol. 5, 336–34610 (2011). https://doi.org/10.1049/iet-syb.2011.0015

    Article  Google Scholar 

  60. Lees, J., Jaeger, J.A., Gunn, J.A., Noble, B.F.: Analysis of uncertainty consideration in environmental assessment: an empirical study of Canadian EA practice. J. Environ. Plan. Manag. 59(11), 2024–2044 (2016). https://doi.org/10.1080/09640568.2015.1116980

    Article  Google Scholar 

  61. Bahl, A., Stemmler, M.B., Herz, A.V., Roth, A.: Automated optimization of a reduced layer 5 pyramidal cell model based on experimental data. J. Neurosci. Methods 210(1), 22–34 (2012). https://doi.org/10.1016/j.jneumeth.2012.04.006

    Article  Google Scholar 

  62. Markram, H.: The blue brain project. Nat. Rev. Neurosci. 7(2), 153–160 (2006). https://doi.org/10.1038/nrn1848

  63. Zhu, F., Wang, R., Aihara, K., Pan, X.: Energy-efficient firing patterns with sparse bursts in the Chay neuron model. Nonlinear Dyn. 100(3), 2657–2672 (2020). https://doi.org/10.1007/s11071-020-05593-8

  64. Wang, Y., Xu, X., Wang, R.: Energy features in spontaneous up and down oscillations. Cogn. Neurodyn. 15(1), 65–75 (2021). https://doi.org/10.1007/s11571-020-09597-3

    Article  Google Scholar 

Download references

Acknowledgements

The first author acknowledges the Ministry of Education of the People’s Republic of China for its generous support of the China Scholarship Council (CSC) as well as the computational resources provided by the Research Center for Augmented Intelligence at Zhejiang Laboratory in Hangzhou, China.

Funding

This research is financially supported by the National Natural Science Foundation of China (Grant No. 12172268).

Author information

Authors and Affiliations

Authors

Contributions

M. B. Ghori proposed the research plan, designed simulations, analyzed results, and drafted the manuscript. Y. Kang supervised and sponsored the research.

Corresponding author

Correspondence to Yanmei Kang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghori, M.B., Kang, Y. Uncertainty quantification and sensitivity analysis of a hippocampal CA3 pyramidal neuron model under electromagnetic induction. Nonlinear Dyn 111, 13457–13479 (2023). https://doi.org/10.1007/s11071-023-08514-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-08514-7

Keywords

Navigation