Skip to main content
Log in

Fixed-time adaptive neural network synchronization control for teleoperation system with position error constraints and time-varying delay

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper investigates the fixed-time master–slave synchronization control of teleoperation system with asymmetric position errors constraints, dynamics uncertainties and time-varying delay. First, we propose an adaptive fixed-time combined with Barrier Lyapunov Functions controller to figure out asymmetric constraints issues, and it also applies to the case of teleoperation system with no constraint or symmetric state constraint requirements. Second, the adaptive radial basis function neural networks and linearly parameterizable control methods are used for dealing with the uncertainties and time-varying delay problems of system. Next, it is demonstrated that the globally fixed-time stability performance of teleoperation can be achieved through the proposed control strategy and the asymmetric constraint requirements of the position synchronization errors are met all the time. Finally, simulation validates the feasibility of the control method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Data availability

All datasets generated for this study are included within the article.

References

  1. Hokayem, P.F., Spong, M.W.: Bilateral teleoperation: an historical survey. Automatica 42(12), 2035–2057 (2006). https://doi.org/10.1016/j.automatica.2006.06.027

    Article  MathSciNet  MATH  Google Scholar 

  2. Yan, J., Salcudean, S.E.: Teleoperation controller design using \(\text{ H}_{\infty }\)-optimization with application to motion-scaling. IEEE Trans. Control Syst. Technol. 4(3), 244–258 (1996). https://doi.org/10.1109/87.491198

    Article  Google Scholar 

  3. Zhang, S., Yuan, S., Yu, X., Kong, L., Li, Q., Li, G.: Adaptive neural network fixed-time control design for bilateral teleoperation with time delay. IEEE Trans. Cybern. (2021). https://doi.org/10.1109/TCYB.2021.3063729

    Article  Google Scholar 

  4. Mehrjouyan, A., Menhaj, M.B., Khosravi, M.A.: Robust observer-based adaptive synchronization control of uncertain nonlinear bilateral teleoperation systems under time-varying delay. Measurement 182, 109542 (2021). https://doi.org/10.1016/j.measurement.2021.109542

    Article  Google Scholar 

  5. Shen, H., Pan, Y.-J.: Improving tracking performance of nonlinear uncertain bilateral teleoperation systems with time-varying delays and disturbances. IEEE/ASME Trans. Mech. 25(3), 1171–1181 (2020). https://doi.org/10.1109/TMECH.2019.2962663

    Article  Google Scholar 

  6. Ji, Y., Gong, Y.: Adaptive control for dual-master/single-slave nonlinear teleoperation systems with time-varying communication delays. IEEE Trans. Instrum. Measur. 70, 5503015 (2021). https://doi.org/10.1109/TIM.2021.3075527

    Article  Google Scholar 

  7. Yang, Y., Hua, C., Li, J.: A novel delay-dependent finite-time control of telerobotics system with asymmetric time-varying delays. IEEE Trans. Control Syst. Technol. 30(3), 985–996 (2021). https://doi.org/10.1109/TCST.2021.3088159

    Article  MathSciNet  Google Scholar 

  8. He, W., Wang, T., He, X., Yang, L.-J., Kaynak, O.: Dynamical modeling and boundary vibration control of a rigid-flexible wing system. IEEE/ASME Trans. Mech. 25(6), 2711–2721 (2020). https://doi.org/10.1109/TMECH.2020.2987963

    Article  Google Scholar 

  9. Kumpati, S.N., Kannan, P., et al.: Identification and control of dynamical systems using neural networks. IEEE Trans. Neural Netw. 1(1), 4–27 (1990). https://doi.org/10.1109/72.80202

    Article  Google Scholar 

  10. Yang, C., Wang, X., Li, Z., Li, Y., Su, C.-Y.: Teleoperation control based on combination of wave variable and neural networks. IEEE Trans. Syst. Man Cybern. Syst. 47(8), 2125–2136 (2017). https://doi.org/10.1109/TSMC.2016.2615061

    Article  Google Scholar 

  11. Ji, Y., Liu, D., Guo, Y.: Adaptive neural network based position tracking control for dual-master/single-slave teleoperation system under communication constant time delays. ISA Trans. 93, 80–92 (2019). https://doi.org/10.1016/j.isatra.2019.03.019

    Article  Google Scholar 

  12. Chen, Z., Huang, F., Sun, W., Gu, J., Yao, B.: RBF-neural-network-based adaptive robust control for nonlinear bilateral teleoperation manipulators with uncertainty and time delay. IEEE/ASME Trans. Mech. 25(2), 906–918 (2020). https://doi.org/10.1109/TMECH.2019.2962081

    Article  Google Scholar 

  13. Li, Y., Zhang, K., Liu, K., Johansson, R., Yin, Y.: Neural-network-based adaptive control for bilateral teleoperation with multiple slaves under Round-Robin scheduling protocol. Internat. J. Control 94(6), 1461–1474 (2021). https://doi.org/10.1080/00207179.2019.1652853

    Article  MathSciNet  MATH  Google Scholar 

  14. Piccinelli, N., Muradore, R.: A bilateral teleoperation with interaction force constraint in unknown environment using non linear model predictive control. Eur. J. Control. 62, 185–191 (2021). https://doi.org/10.1016/j.ejcon.2021.06.030

    Article  MATH  Google Scholar 

  15. Jin, X., Dai, S.-L., Liang, J., Guo, D.: Multirobot system formation control with multiple performance and feasibility constraints. IEEE Trans. Control Syst. Technol. 30(4), 1766–1773 (2021). https://doi.org/10.1109/TCST.2021.3117487

    Article  Google Scholar 

  16. Tee, K.P., Ren, B., Ge, S.S.: Control of nonlinear systems with time-varying output constraints. Automatica 47(11), 2511–2516 (2011). https://doi.org/10.1016/j.automatica.2011.08.044

    Article  MathSciNet  MATH  Google Scholar 

  17. Xu, J.-X., Jin, X.: State-constrained iterative learning control for a class of MIMO systems. IEEE Trans. Autom. Control 58(5), 1322–1327 (2013). https://doi.org/10.1109/TAC.2012.2223353

    Article  MATH  Google Scholar 

  18. Jin, X.: Adaptive fixed-time control for MIMO nonlinear systems with asymmetric output constraints using universal barrier functions. IEEE Trans. Autom. Control 64(7), 3046–3053 (2019). https://doi.org/10.1109/TAC.2018.2874877

    Article  MathSciNet  MATH  Google Scholar 

  19. Wang, Z., Sun, Y., Liang, B.: Synchronization control for bilateral teleoperation system with position error constraints: A fixed-time approach. ISA Trans. 93, 125–136 (2019). https://doi.org/10.1016/j.isatra.2019.03.003

    Article  Google Scholar 

  20. Li, Y., Liu, Z., Wang, Z., Yin, Y., Zhao, B.: Adaptive control of teleoperation systems with prescribed tracking performance: a BLF-based approach. Internat. J. Control 95(6), 1600–1610 (2022). https://doi.org/10.1080/00207179.2020.1866212

    Article  MathSciNet  MATH  Google Scholar 

  21. Zhang, H., Song, A., Li, H., Chen, D., Fan, L.: Adaptive finite-time control scheme for teleoperation with time-varying delay and uncertainties. IEEE Trans. Syst. Man Cybern. Syst. 52(3), 1552–1566 (2020). https://doi.org/10.1109/TSMC.2020.3032295

    Article  Google Scholar 

  22. Polyakov, A.: Nonlinear feedback design for fixed-time stabilization of linear control systems. IEEE Trans. Autom. Control 57(8), 2106–2110 (2012). https://doi.org/10.1109/TAC.2011.2179869

    Article  MathSciNet  MATH  Google Scholar 

  23. Xu, G.-H., Qi, F., Lai, Q., Iu, H.H.-C.: Fixed time synchronization control for bilateral teleoperation mobile manipulator with nonholonomic constraint and time delay. IEEE Trans. Circ. Syst. II 67(12), 3452–3456 (2020). https://doi.org/10.1109/TCSII.2020.2990698

    Article  Google Scholar 

  24. Cai, Y., Zhang, H., Wang, Y., Gao, Z., He, Q.: Adaptive bipartite fixed-time time-varying output formation-containment tracking of heterogeneous linear multiagent systems. IEEE Trans. Neural Netw. Learn. Syst. (2021). https://doi.org/10.1109/TNNLS.2021.3059763

    Article  Google Scholar 

  25. Chen, M., Wang, H., Liu, X.: Adaptive fuzzy practical fixed-time tracking control of nonlinear systems. IEEE Trans. Fuzzy Syst. 29(3), 664–673 (2021). https://doi.org/10.1109/TFUZZ.2019.2959972

    Article  Google Scholar 

  26. Zhai, D.-H., Xia, Y.: Adaptive control for teleoperation system with varying time delays and input saturation constraints. IEEE Trans. Ind. Electron. 63(11), 6921–6929 (2016). https://doi.org/10.1109/TIE.2016.2583199

    Article  Google Scholar 

  27. Yang, X., Yan, J., Hua, C., Guan, X.: Effects of quantization and saturation on performance in bilateral teleoperator. Internat. J. Robust Nonlinear Control 30(1), 121–141 (2020). https://doi.org/10.1002/rnc.4751

    Article  MathSciNet  MATH  Google Scholar 

  28. Yang, Y., Gan, L., Chen, Y., Hua, C.: Adaptive neural network control for flexible telerobotic systems with communication constraints. J. Franklin Inst. 359(10), 4751–4775 (2022). https://doi.org/10.1016/j.jfranklin.2022.04.035

    Article  MathSciNet  MATH  Google Scholar 

  29. Ma, Z., Liu, Z., Huang, P.: Fractional-order control for uncertain teleoperated cyber-physical system with actuator fault. IEEE/ASME Trans. Mech. 26(5), 2472–2482 (2021). https://doi.org/10.1109/TMECH.2020.3039967

    Article  Google Scholar 

  30. Ma, Z., Liu, Z., Huang, P., Kuang, Z.: Adaptive fractional-order sliding mode control for admittance-based telerobotic system with optimized order and force estimation. IEEE Trans. Ind. Electron. 69(5), 5165–5174 (2022). https://doi.org/10.1109/TIE.2021.3078385

    Article  Google Scholar 

  31. Lampinen, S., Koivumäki, J., Zhu, W.-H., Mattila, J.: Force-sensor-less bilateral teleoperation control of dissimilar master-slave system with arbitrary scaling. IEEE Trans. Control Syst. Technol. 30(3), 1037–1051 (2021). https://doi.org/10.1109/TCST.2021.3091314

  32. Wang, C., Lin, Y.: Decentralized adaptive tracking control for a class of interconnected nonlinear time-varying systems. Automatica 54, 16–24 (2015). https://doi.org/10.1016/j.automatica.2015.01.041

    Article  MathSciNet  MATH  Google Scholar 

  33. Zhu, Z., Xia, Y., Fu, M.: Attitude stabilization of rigid spacecraft with finite-time convergence. Internat. J. Robust Nonlinear Control 21(6), 686–702 (2011). https://doi.org/10.1002/rnc.1624

    Article  MathSciNet  MATH  Google Scholar 

  34. Yu, S., Yu, X., Shirinzadeh, B., Man, Z.: Continuous finite-time control for robotic manipulators with terminal sliding mode. Automatica 41(11), 1957–1964 (2005). https://doi.org/10.1016/j.automatica.2005.07.001

    Article  MathSciNet  MATH  Google Scholar 

  35. Wang, H.-Q., Chen, B., Lin, C.: Adaptive neural tracking control for a class of stochastic nonlinear systems. Internat. J. Robust Nonlinear Control 24(7), 1262–1280 (2014). https://doi.org/10.1002/rnc.2943

    Article  MathSciNet  MATH  Google Scholar 

  36. Jiang, B., Hu, Q., Friswell, M.I.: Fixed-time attitude control for rigid spacecraft with actuator saturation and faults. IEEE Trans. Control Syst. Technol. 24(5), 1892–1898 (2016). https://doi.org/10.1109/TCST.2016.2519838

    Article  Google Scholar 

  37. Zhang, S., Dong, Y., Ouyang, Y., Yin, Z., Peng, K.: Adaptive neural control for robotic manipulators with output constraints and uncertainties. IEEE Trans. Neural Netw. Learn. Syst. 29(11), 5554–5564 (2008). https://doi.org/10.1109/TNNLS.2018.2803827

    Article  MathSciNet  Google Scholar 

  38. Spong, M.W., Hutchinson, S., Vidyasagar, M.: Robot Modeling and Control. Wiley, New York (2006)

    Google Scholar 

  39. Spong, M.W., Vidyasagar, M.: Robot Dynamics and Control. Wiley, New York (2008)

    Google Scholar 

  40. Tee, K.P., Ge, S.S., Tay, E.H.: Barrier lyapunov functions for the control of output-constrained nonlinear systems. Automatica 45(4), 918–927 (2009). https://doi.org/10.1016/j.automatica.2008.11.017

    Article  MathSciNet  MATH  Google Scholar 

  41. Wang, Z., Chen, Z., Liang, B.: Fixed-time velocity reconstruction scheme for space teleoperation systems: exp barrier Lyapunov function approach. Acta Astronaut. 157, 92–101 (2019). https://doi.org/10.1016/j.actaastro.2018.12.018

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the Natural Science Foundation of Hebei Province (No. F2022208007), in part by the Foundation of Science and Technology Project of Hebei Education Department (No. ZD2022136), in part by the Basic Research Quality Improvement Project of Hebei University of Science and Technology (No. 2021YWF12), in part by the Doctoral Research Foundation of Hebei University of Science and Technology (No. 1181439), in part by the Subject Competition Teaching Reform Project of School of Electrical Engineering, Hebei University of Science and Technology (No. DQJ20210401), in part by the Military Science and Technology Commission of China (Nos. 2413087 and 2020-JCJQ-JJ-217), and in part by the Graduate Student Innovation Ability Training Project of Hebei Education Department (Nos. XJCXZZSS2022011 and CXZZSS2023097).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yude Ji.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Shan Su and Yude Ji contributed equally to this work.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, S., Ji, Y. Fixed-time adaptive neural network synchronization control for teleoperation system with position error constraints and time-varying delay. Nonlinear Dyn 111, 13053–13072 (2023). https://doi.org/10.1007/s11071-023-08509-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-08509-4

Keywords

Navigation