Skip to main content
Log in

Fixed-time prescribed performance tracking control for manipulators against input saturation

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this work, we pay attention to investigating fixed-time trajectory tracking with prescribed performance for a multi-degree-of-freedom manipulator system subjected to unknown dynamics and input saturation. The radial basis function neural network (RBFNN) is applied to online compensate for the unknown dynamics of the system. In order to guarantee the transient and steady-state performance of the trajectory tracking control, a prescribed performance function (PPF) is used to transform the tracking error. Based on the transformed error, a fixed-time auxiliary system is proposed to compensate for the input saturation impact. Using the compensation error, a non-singular terminal sliding surface is designed, and the corresponding fixed-time control scheme is also proposed. By Lyapunov theorem, it is proved that the reaching phase of the sliding manifold can be completed in finite time, and the stability of the closed-loop system is analyzed. Experimental results verify the effectiveness of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

Enquiries about data availability should be directed to the authors.

References

  1. Sun, Y., Liu, J., Gao, Y., Liu, Z., Zhao, Y.: Adaptive neural tracking control for manipulators with prescribed performance under input saturation, IEEE/ASME Transactions on Mechatronics, pp. 1-10, (2022), https://doi.org/10.1109/TMECH.2022.3213441

  2. Liu, J., Shen, X., Alcaide, A., Yin, Y., Leon, J., Vazquez, S., Wu, L., Franquelo, L.: Sliding mode control of grid-connected neutral-point-clamped converters via high-gain observer. IEEE Trans. Industr. Electron. 69(4), 4010–4021 (2022)

    Article  Google Scholar 

  3. Incremona, G., Ferrara, A., Magni, L.: MPC for Robot Manipulators With Integral Sliding Modes Generation. IEEE/ASME Trans. Mechatron. 22(3), 1299–1307 (2017)

    Article  Google Scholar 

  4. Kuang, J., Gao, Y., Chen, C., Zhang, X., Sun, Y., Liu, J.: Stabilization with prescribed instant for high-order integrator systems, IEEE Transactions on Cybernetics, pp. 1-10, (2022) https://doi.org/10.1109/TCYB.2022.3212409

  5. Wu, L., Liu, J., Vazquez, S., Mazumder, S.: Sliding mode control in power converters and drives: a review. IEEE/CAA J. Automatica Sinica 9(3), 392–406 (2022)

    Article  Google Scholar 

  6. Solis, C., Clempner, J., Poznyak, A.: Fast terminal sliding-mode control with an integral filter applied to a van der pol oscillator. IEEE Trans. Industr. Electron. 64(7), 5622–5628 (2017)

    Article  Google Scholar 

  7. Feng, Y., Yu, X., Man, Z.: Non-singular terminal sliding mode control of rigid manipulators. Automatica 38(12), 2159–2167 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  8. Jie, W., Yudong, Z., Yulong, B., Kim, H., Lee, M.: Trajectory tracking control using fractional-order terminal sliding mode control with sliding perturbation observer for a 7-dof robot manipulator. IEEE/ASME Trans. Mechatron. 25(4), 1886–1893 (2020)

    Article  Google Scholar 

  9. Ahmed, S., Wang, H., Tian, Y.: Adaptive high-order terminal sliding mode control based on time delay estimation for the robotic manipulators with backlash hysteresis. IEEE Trans. Syst. Man, and Cybernet.: Syst. 51(2), 1128–1137 (2021)

    Article  Google Scholar 

  10. Shen, H., Pan, Y.-J.: Tracking synchronization improvement of networked manipulators using novel adaptive nonsingular terminal sliding mode control. IEEE Trans. Industr. Electron. 68(5), 4279–4287 (2021)

    Article  Google Scholar 

  11. Yao, Q., Han, H., Qiao, D.: Nonsingular fixed-time tracking guidance for mars aerocapture with neural compensation, IEEE Transactions on Aerospace and Electronic Systems, pp. 1–1, (2022)

  12. Sun, J., Pu, Z., Yi, J., Liu, Z.: Fixed-time control with uncertainty and measurement noise suppression for hypersonic vehicles via augmented sliding mode observers. IEEE Trans. Industr. Inf. 16(2), 1192–1203 (2020)

    Article  Google Scholar 

  13. Sáchez-Torres, J.D., Sanchez, E.N., Loukianov, A.G.: Predefined-time stability of dynamical systems with sliding modes, In: American Control Conference (ACC) 2015, 5842–5846 (2015)

  14. Ni, J., Liu, L., Tang, Y., Liu, C.: Predefined-time consensus tracking of second-order multiagent systems. IEEE Trans. Syst. Man, Cybernet. Syst. 51(4), 2550–2560 (2021)

    Article  Google Scholar 

  15. Xu, B., Shou, Y., Shi, Z., Yan, T.: Predefined-time hierarchical coordinated neural control for hypersonic reentry vehicle, IEEE Transactions on Neural Networks and Learning Systems, pp. 1–11, (2022)

  16. Zhang, L., Xie, W., Liu, J.: Robust control of saturating systems with markovian packet dropouts under distributed mpc. ISA Trans. 85, 49–59 (2019)

    Article  Google Scholar 

  17. Yu, Z., Qu, Y., Zhang, Y.: Distributed fault-tolerant cooperative control for multi-uavs under actuator fault and input saturation. IEEE Trans. Control Syst. Technol. 27(6), 2417–2429 (2019)

    Article  Google Scholar 

  18. Liu, E., Yan, Y., Yang, Y.: Neural network approximation-based backstepping sliding mode control for spacecraft with input saturation and dynamics uncertainty. Acta Astronaut. 191, 1–10 (2022)

    Article  Google Scholar 

  19. Sedghi, F., Arefi, M. M., Abooee, A., Yin, S.: Distributed adaptive-neural finite-time consensus control for stochastic nonlinear multiagent systems subject to saturated inputs, IEEE Transactions on Neural Networks and Learning Systems, pp. 1–15, (2022)

  20. Chen, Z., Li, Z., Chen, C.L.P.: Disturbance observer-based fuzzy control of uncertain mimo mechanical systems with input nonlinearities and its application to robotic exoskeleton. IEEE Trans. Cybernet. 47(4), 984–994 (2017)

    Article  Google Scholar 

  21. Yang, C., Huang, D., He, W., Cheng, L.: Neural control of robot manipulators with trajectory tracking constraints and input saturation. IEEE Trans. Neural Netw. Learn. Syst. 32(9), 4231–4242 (2021)

    Article  MathSciNet  Google Scholar 

  22. Ma, L., Mei, K., Yan, Z., Ding, S., Li, Z., Pan, T.: Design of adaptive fuzzy fixed-time HOSM controller subject to asymmetric output constraints, IEEE Transactions on Fuzzy Systems, pp. 1–11, (2023) https://doi.org/10.1109/TFUZZ.2023.3241147

  23. Hu, Y., Yan, H., Zhang, H., Wang, M., Zeng, L.: Robust adaptive fixed-time sliding-mode control for uncertain robotic systems with input saturation, IEEE Transactions on Cybernetics, pp. 1–11, (2022)

  24. Wang, S., Ren, X., Na, J., Zeng, T.: Extended-state-observer-based funnel control for nonlinear servomechanisms with prescribed tracking performance. IEEE Trans. Autom. Sci. Eng. 14(1), 98–108 (2017)

    Article  Google Scholar 

  25. Huang, H., He, W., Li, J., Xu, B., Yang, C., Zhang, W.: Disturbance observer-based fault-tolerant control for robotic systems with guaranteed prescribed performance. IEEE Trans. Cybernet. 52(2), 772–783 (2022)

    Article  Google Scholar 

  26. Bechlioulis, C.P., Rovithakis, G.A.: Robust adaptive control of feedback linearizable MIMO nonlinear systems with prescribed performance. IEEE Trans. Autom. Control 53(9), 2090–2099 (2008)

  27. Liu, Y., Liu, X., Jing, Y.: Adaptive neural networks finite-time tracking control for non-strict feedback systems via prescribed performance. Inf. Sci. 468, 29–46 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  28. Yang, P., Su, Y.: Proximate fixed-time prescribed performance tracking control of uncertain robot manipulators, IEEE/ASME Transactions on Mechatronics, pp. 1–11, (2021) https://doi.org/10.1109/TMECH.2021.3107150

  29. Sun, Y., Chen, B., Lin, C., Wang, H., Zhou, S.: Adaptive neural control for a class of stochastic nonlinear systems by backstepping approach. Inf. Sci. 369, 748–764 (2016)

    Article  MATH  Google Scholar 

  30. Zuo, Z., Tian, B., Defoort, M., Ding, Z.: Fixed-time consensus tracking for multiagent systems with high-order integrator dynamics. IEEE Trans. Autom. Control 63(2), 563–570 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  31. Yang, H., Ye, D.: Observer-based fixed-time secure tracking consensus for networked high-order multiagent systems against dos attacks. IEEE Trans. Cybernet. 52(4), 2018–2031 (2022)

    Article  Google Scholar 

  32. Tran, M., Kang, H.J.: A novel adaptive finite-time tracking control for robotic manipulators using nonsingular terminal sliding mode and RBF neural networks. Int. J. Precision Eng. Manuf. 17(7), 863–870 (2016)

    Article  Google Scholar 

  33. Zhang, S., Yang, P., Kong, L., Chen, W., Fu, Q., Peng, K.: Neural networks-based fault tolerant control of a robot via fast terminal sliding mode. IEEE Trans. Syst. Man, Cybernet. Syst. 51(7), 4091–4101 (2021)

    Article  Google Scholar 

  34. Sun, L., Liu, Y.: Extended state observer augmented finite-time trajectory tracking control of uncertain mechanical systems. Mech. Syst. Signal Process. 139, 106374 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China (62022030, 62033005 and 62103118), the Fundamental Research Funds for the Central Universities (HIT.OCEF.2021005), the Heilongjiang Provincial Natural Science Foundation of China (ZD2021F001), the Self-Planned Task (NO. SKLRS202215B) of State Key Laboratory of Robotics and System (HIT) and the China Postdoctoral Science Foundation under Grant 2021M700037 and Grant 2021T140160.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianxing Liu.

Ethics declarations

Conflict of interest

The authors have not disclosed any competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Y., Kuang, J., Gao, Y. et al. Fixed-time prescribed performance tracking control for manipulators against input saturation. Nonlinear Dyn 111, 14077–14095 (2023). https://doi.org/10.1007/s11071-023-08499-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-08499-3

Keywords

Navigation