Skip to main content
Log in

Constraint-following control for uncertain mechanical systems: an intelligent multi-agent game-theoretic approach

  • Review
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Practically all performance requirement of systems can be formulated as constraints. In engineering, systems are tasked, via proper control design, to follow the constraints. There are however two major challenges. The first is that systems possess uncertainty, which may be (possibly fast) time-varying. The second is that systems are mostly nonlinear, due to effects such as nonlinear elasticity, etc. To resolve the challenges, a novel performance measure \({\hat{\beta }}\) is introduced as a dynamic depiction of the constraint-following error. A new control design is proposed based on this measure. The control design procedure includes two phases. The first phase is to design a control scheme, based on a feasible parameter (meaning the parameter only needs to be selected within a certain range), which renders guaranteed performance regardless of the uncertainty. After that, the second phase is to seek an optimal design for the control parameters. This task is resolved by an intelligent multi-agent game-theoretic approach. We consider there are multi-agents in the design process, each addresses a design consideration. However these considerations are opposite: with one’s decreases (or increases) will increase (or decrease) the other. Agents are to cooperate with each other intelligently to reach the optimal choice of the design parameters. The design is applied to an active suspension system, and its performance is verified by comparing with linear-quadratic regulator control and sliding mode control methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

DataAvailability Statement

All data are fully available without restriction.

References

  1. Dhaouadi, R., Hatab, A.A.: Dynamic modelling of differential-drive mobile robots using Lagrange and Newton–Euler methodologies: a unified framework. Adv. Robot. Autom. 2(2), 1–7 (2013)

    Google Scholar 

  2. Udwadia, F.E., Kalaba, R.E.: Analytical Dynamics: A New Approach. Cambridge University Press, New York (1996)

    Book  MATH  Google Scholar 

  3. Udwadia, F.E., Phohomsiri, P.: Explicit equations of motion for constrained mechanical systems with singular mass matrices and applications to multi-body dynamics. Proc. R. Soc. Math. Phys. Eng. Sci. Lond. 462(2071), 2097–2117 (2006)

    MathSciNet  MATH  Google Scholar 

  4. Udwadia, F.E., Wanichanon, T.: Hamel’s paradox and the foundations of analytical dynamics. Appl. Math. Comput. 217(3), 1253–1265 (2010)

    MathSciNet  MATH  Google Scholar 

  5. Papastavridis, J.G.: Analytical Mechanics: A Comprehensive Treatise on the Dynamics of Constrained Systems. Oxford University Press, New York (2002)

    MATH  Google Scholar 

  6. Udwadia, F.E.: A new approach to stable optimal control of complex nonlinear dynamical systems. J. Appl. Mech. 81(3), 1–6 (2014)

    Article  MathSciNet  Google Scholar 

  7. Zhao, R., Chen, Y.H., Jiao, S., Ma, X.: A constraint-following control for uncertain mechanical systems: given force coupled with constraint force. Nonlinear Dyn. 93(3), 1201–1217 (2018)

    Article  MATH  Google Scholar 

  8. Yu, R., Chen, Y.H., Zhao, H., Sun, H.: Uniform ultimate boundedness for underactuated mechanical systems as mismatched uncertainty disappeared. Nonlinear Dyn. 95, 2765–2782 (2019)

    Article  MATH  Google Scholar 

  9. Vu, V.P., Wang, W.J.: Polynomial controller synthesis for uncertain large-scale polynomial T-S fuzzy systems. IEEE Trans. Cybern. 51, 1–14 (2019)

    Google Scholar 

  10. Wang, X., Zhao, H., Sun, Q., Chen, Y.H.: A new high-order adaptive robust control for constraint following of mechanical systems. Asian J. Control 19(5), 1672–1687 (2017)

    MathSciNet  MATH  Google Scholar 

  11. Yu, R., Chen, Y.H., Han, B., Zhao, H.: A hierarchical control design framework for fuzzy mechanical systems with high-order uncertainty bound. IEEE Trans. Fuzzy Syst. 29(4), 820–832 (2021)

    Article  Google Scholar 

  12. Yan, Z., Wang, M., Xu, J.: Global adaptive neural network control of underactuated autonomous underwater vehicles with parametric modeling uncertainty. Asian J. Control 21(4), 1–13 (2019)

    MathSciNet  MATH  Google Scholar 

  13. Zhao, R., Li, M., Niu, Q., Chen, Y.H.: Udwadia–Kalaba constraint-based tracking control for artificial swarm mechanical systems: dynamic approach. Nonlinear Dyn. 100(3), 2381–2399 (2020)

    Article  Google Scholar 

  14. Wanichanon, T., Cho, H., Udwadia, F.E.: An approach to the dynamics and control of uncertain multi-body systems. Procedia IUTAM 13, 43–52 (2015)

    Article  Google Scholar 

  15. Cho, H., Wanichanon, T., Udwadia, F.E.: Continuous sliding mode controllers for multi-input multi-output systems. Nonlinear Dyn. 94(4), 2727–2747 (2018)

    Article  Google Scholar 

  16. Udwadia, F.E., Wanichanon, T.: A new approach to the tracking control of uncertain nonlinear multi-body mechanical systems. In: Nonlinear Approaches in Engineering Applications, vol. 2, pp. 101–136. Springer, New York (2014)

  17. Han, J., Chen, Y.H., Zhao, X., Dong, F.: Optimal design for robust control of uncertain flexible joint manipulators: a fuzzy dynamical system approach. Int. J. Control 91(4), 937–951 (2018)

    Article  MathSciNet  Google Scholar 

  18. Yu, R., Ding, S., Tian, H., Chen, Y.H.: A hierarchical constraint approach for dynamic modeling and trajectory tracking control of a mobile robot. J. Vib. Control 28(5–6), 564–576 (2022)

    Article  MathSciNet  Google Scholar 

  19. Guo, J., Li, D., He, B.: Intelligent collaborative navigation and control for AUV tracking. IEEE Trans. Ind. Inform. 17(3), 1732–1741 (2021)

    Article  Google Scholar 

  20. Sun, H., Chen, Y.H., Zhao, H.: Adaptive robust control methodology for active roll control system with uncertainty. Nonlinear Dyn. 92, 359–371 (2018)

    Article  MATH  Google Scholar 

  21. Dong, F., Zhao, X., Chen, Y.H.: Optimal longitudinal control for vehicular platoon systems: adaptiveness, determinacy, and fuzzy. IEEE Trans. Fuzzy Syst. 29(4), 889–903 (2020)

    Article  Google Scholar 

  22. Yu, R., Chen, Y.H., Ding, S., Yu, T., Huang, J.: Robust control design for fuzzy mechanical systems: a two-player Nash game approach. IEEE Trans. Systems Man Cybern. Syst. 52(10), 6569–6581 (2022)

    Article  Google Scholar 

  23. Sun, Q., Wang, X., Chen, Y.H.: Satellite formation-containment control emphasis on collision avoidance and uncertainty suppression. IEEE Trans. Cybern. (2022). https://doi.org/10.1109/TCYB.2022.3173683

    Article  Google Scholar 

  24. Cho, H., Udwadia, F.E., Wanichanon, T.: Autonomous precision control of satellite formation flight under unknown time-varying model and environmental uncertainties. J. Astronaut. Sci. 67(4), 1470–1499 (2020)

    Article  Google Scholar 

  25. Phong, V., Wang, W.J.: Decentralized observer-based controller synthesis for a large-scale polynomial T-S fuzzy system with nonlinear interconnection terms. IEEE Trans. Cybern. 51(6), 3312–3324 (2021)

    Article  Google Scholar 

  26. Li, C., Zhao, H., Sun, H., Chen, Y.H.: Robust bounded control for nonlinear uncertain systems with inequality constraints. Mech. Syst. Signal Process. 140, 106665–106683 (2020)

    Article  Google Scholar 

  27. Udwadia, F.E., Wanichanon, T.: Control of uncertain nonlinear multibody mechanical systems. J. Appl. Mech. 81(4), 20 (2014)

    Article  Google Scholar 

  28. Chen, Y.H.: Second-order constraints for equations of motion of constrained systems. IEEE/ASME Transactions on Mechatronics 3(3), 240–248 (1998)

    Article  Google Scholar 

  29. Chen, Y.H., Zhang, X.: Adaptive robust approximate constraint-following control for mechanical systems. J. Frankl. Inst. 347(1), 69–86 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  30. Han, J., Yang, S., Xia, L., Chen, Y.H.: Deterministic adaptive robust control with a novel optimal gain design approach for a fuzzy 2-DOF lower limb exoskeleton robot system. IEEE Trans. Fuzzy Syst. 29(8), 2373–2387 (2021)

    Article  Google Scholar 

  31. Yu, R., Chen, Y.H., Han, B.: Cooperative game approach to robust control design for fuzzy dynamical systems. IEEE Trans. Cybern. 52(7), 7151–7163 (2022)

    Article  Google Scholar 

  32. Udwadia, F.E., Prasanth, B.K.: Optimal stable control for nonlinear dynamical systems: an analytical dynamics based approach. Nonlinear Dyn. 82(1–2), 547–562 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  33. Udwadia, F.E.: Optimal tracking control of nonlinear dynamical systems. Proc. R. Soc. A Math. Phys. Eng. Sci. 464(2097), 2341–2363 (2008)

    MathSciNet  MATH  Google Scholar 

  34. Rosenberg, R.M.: Analytical Dynamics of Discrete Systems. Plenum Press, New York (1977)

  35. Chen, Y.H.: Constraint-following servo control design for mechanical systems. J. Vib. Control 15(3), 369–389 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  36. Khalil, H.K.: Nonlinear Systems, 3rd edn. Prentice-Hall, Upper Saddle River (1996)

    Google Scholar 

  37. Noble, B., Daniel, J.W.: Applied Linear Algebra, 2nd edn. Prentice-Hall, Hoboken (1977)

    MATH  Google Scholar 

  38. Corless, M.J., Leitmann, G.: Continuous state feedback guaranteeing uniform ultimate boundedness for uncertain dynamic systems. IEEE Trans. Autom. Control 26(5), 1139–1144 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  39. Lin, J.S., Kanellakopoulos, I.: Nonlinear design of active suspensions. IEEE Control Syst. 17(3), 45–59 (1997)

    Article  Google Scholar 

  40. Zhu, Y., Zhao, D., Yang, X., Zhang, Q.: Policy iteration for \(H_\infty \) optimal control of polynomial nonlinear systems via sum of squares programming. IEEE Trans. Cybern. 48(2), 500–509 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

The research is supported by the National Natural Science Foundation of China (No. 52005302). This research is also supported by the Shandong Postdoctoral Science Foundation (No. SDCX-ZG-202202029), the Taishan Scholar Foundation of Shandong Province (No. tsqn201909113), the National Natural Science Foundation of China (No. 52174120), and the Elite Plan (No. 0104060540418).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, R., Wang, G., Bai, J. et al. Constraint-following control for uncertain mechanical systems: an intelligent multi-agent game-theoretic approach. Nonlinear Dyn 111, 13653–13668 (2023). https://doi.org/10.1007/s11071-023-08483-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-08483-x

Keywords

Navigation