Skip to main content
Log in

Autonomous assembly of multiple flexible spacecraft using RRT* algorithm and input shaping technique

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The on-orbit assembly is an appealing method to build large space structures. To improve the assembly efficiency, each module trends towards a flexible one. How to account for the nonlinear rigid-flexible dynamics is still an open problem during the assembly mission. This paper presents the dynamics modeling, path planning and controller design for the autonomous assembly of multiple flexible spacecraft. Both the one-by-one and simultaneous assembly scenarios are considered. The assumed modes method is adopted to describe the nonlinear dynamic behaviors of the spacecraft equipped with six flexible appendages. The input shaping technique is used to shape the trajectory planned by the RRT* algorithm to reduce the vibrations of flexible appendages caused by the trajectory tracking for each spacecraft. To avoid collisions among the spacecraft in the team and obstacles, a PD controller together with collision avoidance forces is proposed to drive the spacecraft to track their desired trajectories. Finally, some numerical results are presented to show the effectiveness of the developed path planning algorithm and controller design method. The main major finding of this paper is that the introduction of input shaping technique can reduce the vibration caused by the collision-free trajectory from the RRT* algorithm in assembly mission.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

Data Availability Statement

The datasets generated during and/or analyzed during the current study are proprietary and thus not publicly available, but any data appearing in the present work are available from the author upon reasonable request.

References

  1. Xue, Z., Liu, J., Wu, C., Tong, Y.: Review of in-space assembly technologies. Chin. J. Aeronaut. 34(11), 21–47 (2021). https://doi.org/10.1016/j.cja.2020.09.043

    Article  Google Scholar 

  2. Bowman, L.M., Belvin, W.K., Komendera, E.E., Dorsey, J.T., Doggett, B.R., Lystrup, M., MacEwen, H.A., Fazio, G.G., Batalha, N., Siegler, N., Tong, E.C.: In-space assembly application and technology for NASA’s future science observatory and platform missions. In: Space Telescopes and Instrumentation 2018: Optical, Infrared, and Millimeter Wave, vol. 10698, p. 1069826 (2018). https://doi.org/10.1117/12.2311413. SPIE

  3. Chai, Y., Luo, J., Wang, M.: Bi-level game-based reconfigurable control for on-orbit assembly. Aerosp. Sci. Technol. 124, 107527 (2022). https://doi.org/10.1016/j.ast.2022.107527

    Article  Google Scholar 

  4. Chai, Y., Luo, J., Wang, M., Gao, D.: Receding task allocation method for modular robots during on-orbit assembly. Adv. Space Res. 70(3), 780–791 (2022). https://doi.org/10.1016/j.asr.2022.05.023

    Article  Google Scholar 

  5. Underwood, C., Pellegrino, S., Lappas, V.J., Bridges, C.P., Baker, J.: Using cubesat/micro-satellite technology to demonstrate the autonomous assembly of a reconfigurable space telescope (AAReST). Acta Astronautica 114, 112–122 (2015). https://doi.org/10.1016/j.actaastro.2015.04.008

    Article  Google Scholar 

  6. Cheng, Z., Hou, X., Zhang, X., Zhou, L., Guo, J., Song, C.: In-orbit assembly mission for the space solar power station. Acta Astronautica 129, 299–308 (2016). https://doi.org/10.1016/j.actaastro.2016.08.019

    Article  Google Scholar 

  7. Melroy, P., Hill, L., Fowler, E.E., Hunter, R., Eagen, J., Sullivan, B.R., Will, P., Palmer, J.: Darpa phoenix satlets: Progress towards satellite cellularization. In: AIAA SPACE 2015 Conference and Exposition, p. 4487 (2015). https://doi.org/10.2514/6.2015-4487

  8. Taylor, A.B., Helvajian, H.: HIVE: A space architecture concept. In: Small Satellite Conference. Small Satellite Conference, Virual (2020)

  9. Lee, N.N., Burdick, J.W., Backes, P., Pellegrino, S., Hogstrom, K., Fuller, C., Kennedy, B., Kim, J., Mukherjee, R., Seubert, C., et al.: Architecture for in-space robotic assembly of a modular space telescope. J. Astronom. Telesc., Instrum. Syst. 2(4), 041207 (2016). https://doi.org/10.1117/1.JATIS.2.4.041207

    Article  Google Scholar 

  10. She, Y., Li, S., Wang, Z.: Constructing a large antenna reflector via spacecraft formation flying and reconfiguration control. J. Guid. Cont. Dynam. 42(6), 1372–1382 (2019). https://doi.org/10.2514/1.G004116

    Article  Google Scholar 

  11. Lu, Y., Huang, Z., Zhang, W., Wen, H., Jin, D.: Experimental investigation on automated assembly of space structure from cooperative modular components. Acta Astronautica 171, 378–387 (2020). https://doi.org/10.1016/j.actaastro.2020.03.033

    Article  Google Scholar 

  12. Wang, E., Wu, S., Wu, Z.: Dynamic multi-constrained assembly sequence planning of large space structures considering structural vibration. Acta Astronautica 195, 27–40 (2022). https://doi.org/10.1016/j.actaastro.2022.02.021

    Article  Google Scholar 

  13. Badawy, A., McInnes, C.R.: On-orbit assembly using superquadric potential fields. J. Guid., Cont., Dynam. 31(1), 30–43 (2008). https://doi.org/10.2514/1.28865

    Article  Google Scholar 

  14. Shi, L., Kinkaid, N., Katupitiya, J.: Robust control for satellite attitude regulation during on-orbit assembly. IEEE Transact. Aerosp. Electron. Syst. 52(1), 49–59 (2016). https://doi.org/10.1109/TAES.2016.140472

    Article  Google Scholar 

  15. Cao, K., Li, S., She, Y., Biggs, J.D., Liu, Y., Bian, L.: Dynamics and on-orbit assembly strategies for an orb-shaped solar array. Acta Astronautica 178, 881–893 (2021). https://doi.org/10.1016/j.actaastro.2020.10.030

    Article  Google Scholar 

  16. Battista, T.A., Helvajian, H.: A simulation architecture for self-assembling and reconfigurable space structures. In: AIAA Scitech 2021 Forum, p. 1793 (2021). https://doi.org/10.2514/6.2021-1793

  17. Doerr, B., Linares, R.: Motion planning and control for on-orbit assembly using LQR-RRT* and nonlinear MPC. arXiv preprint arXiv:2008.02846 (2020)

  18. Mohan, S., Miller, D.W.: Dynamic control model calculation: a model generation architecture for autonomous on-orbit assembly. J. Spacecr. Rockets 51(5), 1430–1453 (2014). https://doi.org/10.2514/1.A32581

    Article  Google Scholar 

  19. Wei, Z., Wen, H., Hu, H., Jin, D.: Ground experiment on rendezvous and docking with a spinning target using multistage control strategy. Aerosp. Sci. Technol. 104, 105967 (2020). https://doi.org/10.1016/j.ast.2020.105967

    Article  Google Scholar 

  20. Atallah, M., Okasha, M., Dief, T.N., Omar, F.: Model predictive control-based guidance and control system for simultaneous multi-satellite assembly in proximity operation. In: 2022 13th International Conference on Mechanical and Aerospace Engineering (ICMAE), pp. 114–124 (2022). https://doi.org/10.1109/ICMAE56000.2022.9852870

  21. Chen, T., Shan, J.: Distributed adaptive fault-tolerant attitude tracking of multiple flexible spacecraft on \(SO(3)\). Nonlinear Dynam. 95(3), 1827–1839 (2019). https://doi.org/10.1007/s11071-018-4661-8

    Article  MATH  Google Scholar 

  22. Cao, L., Xiao, B., Golestani, M.: Robust fixed-time attitude stabilization control of flexible spacecraft with actuator uncertainty. Nonlinear Dynam. 100(3), 2505–2519 (2020). https://doi.org/10.1007/s11071-020-05596-5

    Article  Google Scholar 

  23. Chen, T., Chen, G.: Distributed adaptive tracking control of multiple flexible spacecraft under various actuator and measurement limitations. Nonlinear Dynam. 91(3), 1571–1586 (2018). https://doi.org/10.1007/s11071-017-3965-4

    Article  MathSciNet  MATH  Google Scholar 

  24. Huang, D., Wang, Q., Duan, Z.: Distributed attitude control for multiple flexible spacecraft under actuator failures and saturation. Nonlinear Dynam. 88(1), 529–546 (2017). https://doi.org/10.1007/s11071-016-3258-3

    Article  MATH  Google Scholar 

  25. Gao, X.-Y., Guo, Y.-J., Shan, W.-R.: Bilinear forms through the binary bell polynomials, n solitons and bäcklund transformations of the boussinesq-burgers system for the shallow water waves in a lake or near an ocean beach. Commun. Theoretical Phys. 72(9), 095002 (2020). https://doi.org/10.1088/1572-9494/aba23d

    Article  MATH  Google Scholar 

  26. Gao, X.-Y., Guo, Y.-J., Shan, W.-R.: Optical waves/modes in a multicomponent inhomogeneous optical fiber via a three-coupled variable-coefficient nonlinear schrödinger system. Appl. Math. Lett. 120, 107161 (2021). https://doi.org/10.1016/j.aml.2021.107161

    Article  MATH  Google Scholar 

  27. Sun, J., Cai, Z., Sun, J., Jin, D.: Dynamic analysis of a rigid-flexible inflatable space structure coupled with control moment gyroscopes. Nonlinear Dynam. (2023). https://doi.org/10.1007/s11071-023-08254-8

    Article  Google Scholar 

  28. Gao, X.-Y., Guo, Y.-J., Shan, W.-R.: Taking into consideration an extended coupled (2+ 1)-dimensional Burgers system in oceanography, acoustics and hydrodynamics. Chaos, Solitons & Fractals 161, 112293 (2022). https://doi.org/10.1016/j.chaos.2022.112293

    Article  MathSciNet  MATH  Google Scholar 

  29. He, G., Cao, D., van der Heijden, G.: Complicated nonlinear oscillations caused by maneuvering of a flexible spacecraft equipped with hinged solar arrays. Nonlinear Dynam. 111(4), 6261–6293 (2023). https://doi.org/10.1007/s11071-022-08173-0

    Article  Google Scholar 

  30. Cao, Q., Li, H., Jia, Q., Ma, C., Zhang, Y.: Multi-observer approach for tracking control of flexible spacecraft using exponential mapping of \(SE(3)\). Nonlinear Dynam. 111(6), 5329–5343 (2023). https://doi.org/10.1007/s11071-022-08102-1

    Article  Google Scholar 

  31. Katz, J., Mohan, S., Miller, D.: On-orbit assembly of flexible space structures with SWARM. In: AIAA Infotech@ Aerospace 2010, p. 3524 (2010). https://doi.org/10.2514/6.2010-3524

  32. Chen, T., Wen, H., Hu, H., Jin, D.: Output consensus and collision avoidance of a team of flexible spacecraft for on-orbit autonomous assembly. Acta Astronautica 121, 271–281 (2016). https://doi.org/10.1016/j.actaastro.2015.11.004

    Article  Google Scholar 

  33. Chen, T., Wen, H., Hu, H., Jin, D.: On-orbit assembly of a team of flexible spacecraft using potential field based method. Acta Astronautica 133, 221–232 (2017). https://doi.org/10.1016/j.actaastro.2017.01.021

    Article  Google Scholar 

  34. Zafar, M.N., Mohanta, J.: Methodology for path planning and optimization of mobile robots: A review. Procedia Comput. Sci. 133, 141–152 (2018). https://doi.org/10.1016/j.procs.2018.07.018

    Article  Google Scholar 

  35. Chen, T., Wen, H., Hu, H., Jin, D.: Quasi-time-optimal controller design for a rigid-flexible multibody system via absolute coordinate-based formulation. Nonlinear Dynam. 88(1), 623–633 (2017). https://doi.org/10.1007/s11071-016-3265-4

    Article  Google Scholar 

  36. Tutsoy, O.: CPG based RL algorithm learns to control of a humanoid robot leg. Int. J. Robot. Automat. 30(2), 1–7 (2015). https://doi.org/10.2316/Journal.206.2015.2.206-4185

    Article  Google Scholar 

  37. Tutsoy, O., Erol Barkana, D., Colak, S.: Learning to balance an NAO robot using reinforcement learning with symbolic inverse kinematic. Transact. Instit. Measure. Cont. 39(11), 1735–1748 (2017)

    Article  Google Scholar 

  38. Schulman, J., Duan, Y., Ho, J., Lee, A., Awwal, I., Bradlow, H., Pan, J., Patil, S., Goldberg, K., Abbeel, P.: Motion planning with sequential convex optimization and convex collision checking. Int. J. Robot. Res. 33(9), 1251–1270 (2014). https://doi.org/10.1177/0278364914528132

    Article  Google Scholar 

  39. Cai, P., Yue, X., Wang, M., Cui, Y.: Hierarchical motion planning at the acceleration level based on task priority matrix for space robot. Nonlinear Dynam. 107(2), 2309–2326 (2022). https://doi.org/10.1007/s11071-021-07038-2

    Article  Google Scholar 

  40. Itani, O., Shammas, E.: Motion planning for redundant multi-bodied planar kinematic snake robots. Nonlinear Dynam. 104(4), 3845–3860 (2021). https://doi.org/10.1007/s11071-021-06515-y

    Article  Google Scholar 

  41. Baressi Šegota, S., Anđelić, N., Lorencin, I., Saga, M., Car, Z.: Path planning optimization of six-degree-of-freedom robotic manipulators using evolutionary algorithms. Int. J. Adv. Robotic Syst. 17(2), 1729881420908076 (2020). https://doi.org/10.1177/1729881420908076

    Article  Google Scholar 

  42. Karaman, S., Frazzoli, E.: Sampling-based algorithms for optimal motion planning. Int.J.Robot.Res. 30(7), 846–894 (2011). https://doi.org/10.1177/0278364911406761

    Article  MATH  Google Scholar 

  43. Wang, Y., Liu, K., Ji, H.: Adaptive robust fault-tolerant control scheme for spacecraft proximity operations under external disturbances and input saturation. Nonlinear Dynam. 108(3), 207–222 (2022). https://doi.org/10.1007/s11071-021-07182-9

    Article  Google Scholar 

  44. Chen, T., Wen, H.: Autonomous assembly with collision avoidance of a fleet of flexible spacecraft based on disturbance observer. Acta Astronautica 147, 86–96 (2018). https://doi.org/10.1016/j.actaastro.2018.03.027

    Article  Google Scholar 

  45. Guo, J., Xia, W., Hu, X., Ma, H.: Feedback RRT* algorithm for UAV path planning in a hostile environment. Computer Industrial Eng. 174, 108771 (2022). https://doi.org/10.1016/j.cie.2022.108771

    Article  Google Scholar 

  46. Adiyatov, O., Varol, H.A.: A novel RRT*-based algorithm for motion planning in dynamic environments. In: 2017 IEEE International Conference on Mechatronics and Automation (ICMA), pp. 1416–1421 (2017). https://doi.org/10.1109/ICMA.2017.8016024. IEEE

  47. Zhang, H., Wang, Y., Zheng, J., Yu, J.: Path planning of industrial robot based on improved RRT algorithm in complex environments. IEEE Access 6, 53296–53306 (2018). https://doi.org/10.1109/ACCESS.2018.2871222

    Article  Google Scholar 

  48. Seemann, M., Janschek, K.: RRT-based trajectory planning for fixed wing UAVs using Bezier curves. In: ISR/Robotik 2014; 41st International Symposium on Robotics, pp. 1–8 (2014). VDE

  49. Ghorbani, H., Alipour, K., Tarvirdizadeh, B., Hadi, A.: Comparison of various input shaping methods in rest-to-rest motion of the end-effecter of a rigid-flexible robotic system with large deformations capability. Mechanical Systems and Signal Processing 118, 584–602 (2019). https://doi.org/10.1016/j.ymssp.2018.09.003

    Article  Google Scholar 

  50. Fasih ur Rehman, S.M., Mohamed, Z., Husain, A.R., Jaafar, H.I., Shaheed, M.H., Abbasi, M.A.: Input shaping with an adaptive scheme for swing control of an underactuated tower crane under payload hoisting and mass variations. Mech.Syst.Sig.Process. 175, 109106 (2022). https://doi.org/10.1016/j.ymssp.2022.109106

    Article  Google Scholar 

  51. Chen, T., Shan, J.: Fixed-time consensus control of multiagent systems using input shaping. IEEE Transact.Ind.Electron. 66(9), 7433–7441 (2019). https://doi.org/10.1109/TIE.2018.2879305

  52. Luo, J., Yu, M., Wang, M., Yuan, J.: A fast trajectory planning framework with task-priority for space robot. Acta Astronautica 152, 823–835 (2018). https://doi.org/10.1016/j.actaastro.2018.09.023

    Article  Google Scholar 

Download references

Acknowledgements

The author owes a profound debt of gratitude to the editor and the reviewers for their insightful comments and constructive feedback throughout the development of this paper.

Funding

This work was supported by the National Natural Science Foundation of China under Grants No. 12102174 and 11832005, the Science and Technology on Space Intelligent Control Laboratory (Grant No. 2021-JCJQ-LB-010-17), the Fundamental Research Funds for the Central Universities (No. NP2022301), and the Research Fund of State Key Laboratory of Mechanics and Control of Mechanical Structures (Nanjing University of Aeronautics and astronautics) (Grant No. MCMS-I-0122K01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ti Chen.

Ethics declarations

Conflict of Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix

A Detailed Expressions of M\(_2\)

The nonzero elements of \(\varvec{M}_2 \in {\mathbb {R}}^{6\times 24}\) are as follows:

\(\varvec{M}_{2,(1,9)} = c_1\), \(\varvec{M}_{2,(1,10)} = c_2\), \(\varvec{M}_{2,(1,13)} = -c_1\), \(\varvec{M}_{2,(1,14)} = -c_2\), \(\varvec{M}_{2,(1,17)} = c_1\), \(\varvec{M}_{2,(1,18)} = c_2\), \(\varvec{M}_{2,(1,21)} = -c_1\), \(\varvec{M}_{2,(1,22)} = -c_2\), \(\varvec{M}_{2,(2,1)} = c_1\), \(\varvec{M}_{2,(2,2)} = c_2\), \(\varvec{M}_{2,(2,5)} = -c_1\), \(\varvec{M}_{2,(2,6)} = -c_2\), \(\varvec{M}_{2,(2,19)} = c_1\), \(\varvec{M}_{2,(2,20)} = c_2\), \(\varvec{M}_{2,(2,23)} = -c_1\), \(\varvec{M}_{2,(2,24)} = -c_2\), \(\varvec{M}_{2,(3,3)} = c_1\), \(\varvec{M}_{2,(3,4)} = c_2\), \(\varvec{M}_{2,(3,7)} = -c_1\), \(\varvec{M}_{2,(3,8)} =- c_2\), \(\varvec{M}_{2,(3,11)} = c_1\), \(\varvec{M}_{2,(3,12)} = c_2\), \(\varvec{M}_{2,(3,15)} = -c_1\), \(\varvec{M}_{2,(3,16)} =- c_2\), \(\varvec{M}_{2,(4,11)} = c_3\), \(\varvec{M}_{2,(4,12)} = c_4\), \(\varvec{M}_{2,(4,15)} = c_3\), \(\varvec{M}_{2,(4,16)} = c_4\), \(\varvec{M}_{2,(4,19)} = -c_3\), \(\varvec{M}_{2,(4,20)} = -c_4\), \(\varvec{M}_{2,(4,23)} = -c_3\), \(\varvec{M}_{2,(4,24)} = -c_4\), \(\varvec{M}_{2,(5,3)} = -c_3\), \(\varvec{M}_{2,(5,4)} = -c_4\), \(\varvec{M}_{2,(5,7)} = -c_3\), \(\varvec{M}_{2,(5,8)} = -c_4\), \(\varvec{M}_{2,(5,17)} = c_3\), \(\varvec{M}_{2,(5,18)} = c_4\), \(\varvec{M}_{2,(5,21)} = c_3\), \(\varvec{M}_{2,(5,22)} = c_4\), \(\varvec{M}_{2,(6,1)} = c_3\), \(\varvec{M}_{2,(6,2)} = c_4\), \(\varvec{M}_{2,(6,5)} = c_3\), \(\varvec{M}_{2,(6,6)} = c_4\), \(\varvec{M}_{2,(6,9)} = -c_3\), \(\varvec{M}_{2,(6,10)} = -c_4\), \(\varvec{M}_{2,(6,13)} = -c_3\), \(\varvec{M}_{2,(6,14)} = -c_4\), where \( c_1 = \rho \int _{0}^{l} \varPhi _1(x) dx\), \( c_2 = \rho \int _{0}^{l} \varPhi _1(x) dx\), \(c_3 = \rho r \int _{0}^{l} \varPhi _1(x) dx+ \rho \int _{0}^{l} x \varPhi _1(x) dx\) and \(c_4 = \rho r \int _{0}^{l} \varPhi _2(x) dx+ \rho \int _{0}^{l} x \varPhi _2(x) dx\).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, T., Wang, Y., Wen, H. et al. Autonomous assembly of multiple flexible spacecraft using RRT* algorithm and input shaping technique. Nonlinear Dyn 111, 11223–11241 (2023). https://doi.org/10.1007/s11071-023-08445-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-08445-3

Keywords

Navigation