Skip to main content
Log in

Aerodynamic prediction for flight dynamics simulation of parafoil system and airdrop test validation

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This study presents a step toward bridging the gap between numerical simulation and practical applications of parafoil delivery systems. The flexible deformations have an important influence on aerodynamic performance of parafoil. However, the effects of trailing edge deflection deformations under steering operations on aerodynamics and flight performances have rarely been studied. This paper aims to establish a high-fidelity dynamic model for flight simulation of parafoil delivery systems. A fluid–structure interaction method, combining incompressible fluid dynamics solver and structural dynamics solver, was used to estimate the structural deformations and aerodynamic forces. Based on the established model, the flight dynamic responses and aerodynamics of the parafoil system to symmetric control inputs were analyzed. Results show that symmetric deflections can effectively adjust the aerodynamic performance and dynamic behavior. Finally, the airdrop test proved that model predictions are reasonably accurate for use in flight dynamics simulations. This work can be further applied to controller design and parameter adjustment for precision airdrop systems as an alternative to expensive and unrepeatable experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26

Similar content being viewed by others

Data availability

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Yakimenko, O.A.: Precision aerial delivery systems: Modeling, dynamics, and control. American Institute of Aeronautics and Astronautics Inc, Reston, Virginia (2015)

    Book  Google Scholar 

  2. Tanaka, M., Tanaka, K., Wang, H.O.: Practical model construction and stable control of an unmanned aerial vehicle with a parafoil-Type wing. IEEE Trans. Syst. Man, Cybern. Syst. 49, 1291–1297 (2019)

    Article  Google Scholar 

  3. Tao, J., Sun, Q., Liang, W., Chen, Z., He, Y., Dehmer, M.: Computational fluid dynamics based dynamic modeling of parafoil system. Appl. Math. Model. 54, 136–150 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  4. Zhu, H., Sun, Q., Wu, W., Sun, M., Chen, Z.: Accurate modeling and control for parawing unmanned aerial vehicle. Acta Aeronaut. Astronaut. Sin. 40, 79–91 (2019)

    Google Scholar 

  5. Slegers, N.J., Gorman, C.M.: Comparison and analysis of multi-body parafoil models with varying degrees of freedom. In: 21st AIAA Aerodynamic Decelerator Systems Technology Conference and Seminar. American Institute of Aeronautics and Astronautics, Dublin, Ireland (2011)

  6. Zhu, E., Sun, Q., Tan, P., Chen, Z., Kang, X., He, Y.: Modeling of powered parafoil based on Kirchhoff motion equation. Nonlinear Dyn. 79, 617–629 (2015)

    Article  Google Scholar 

  7. Luo, S., Sun, Q., Sun, M., Tan, P., Wu, W., Sun, H., Chen, Z.: On decoupling trajectory tracking control of unmanned powered parafoil using ADRC-based coupling analysis and dynamic feedforward compensation. Nonlinear Dyn. 92, 1619–1635 (2018)

    Article  Google Scholar 

  8. Tao, J., Sun, Q., Tan, P., Chen, Z., He, Y.: Active disturbance rejection control (ADRC)-based autonomous homing control of powered parafoils. Nonlinear Dyn. 86, 1461–1476 (2016)

    Article  Google Scholar 

  9. Ochi, Y.: Modeling and simulation of flight dynamics of a relative-roll-type parafoil. In: AIAA Scitech 2020 Forum. pp. 1–10. , Orlando, FL (2020)

  10. Tan, P., Sun, M., Sun, Q., Chen, Z.: Dynamic modeling and experimental verification of powered parafoil with two suspending points. IEEE Access. 8, 12955–12966 (2020)

    Article  Google Scholar 

  11. Müller, S., Wagner, O., Sachs, G.: A high-fidelity nonlinear multibody simulation model for parafoil systems. In: 17th AIAA Aerodynamic Decelerator Systems Technology Conference and Seminar. p. 2120. , Monterey, California (2003)

  12. Eslambolchi, A., Johari, H.: Simulation of flowfield around a ram-air personnel parachute canopy. J. Aircr. 50, 1628–1636 (2013)

    Article  Google Scholar 

  13. Potvin, J., Bergeron, K., Brown, G., Charles, R., Desabrais, K., Johari, H., Kumar, V., McQuilling, M., Morris, A., Noetscher, G., Tutt, B.: The road ahead: A white paper on the development, testing and use of advanced numerical modeling for aerodynamic decelerator systems design and analysis. In: 21st AIAA Aerodynamic Decelerator Systems Technology Conference and Seminar. p. 2501. American Institute of Aeronautics and Astronautics (2011)

  14. Ghoreyshi, M., Bergeron, K., Seidel, J., Jirásek, A., Lofthouse, A.J., Cummings, R.M.: Prediction of aerodynamic characteristics of ram-air parachutes. J. Aircr. 53, 1802–1820 (2016)

    Article  Google Scholar 

  15. Ghoreyshi, M., Bergeron, K., Jirásek, A., Seidel, J., Lofthouse, A.J., Cummings, R.M.: Computational aerodynamic modeling for flight dynamics simulation of ram-air parachutes. Aerosp. Sci. Technol. 54, 286–301 (2016)

    Article  Google Scholar 

  16. Wu, W., Sun, Q., Sun, M., Dehmer, M., Chen, Z.: Modeling and control of parafoils based on computational fluid dynamics. Appl. Math. Model. 70, 378–401 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  17. Cacan, M.R., Costello, M.: Adaptive control of precision guided airdrop systems with highly uncertain dynamics. J. Guid. Control. Dyn. 41, 1025–1035 (2018)

    Article  Google Scholar 

  18. Jovichikj, R., Yaşir, A., Kiper, G.: Reconfigurable deployable umbrella canopies. In: 2018 International Conference on Reconfigurable Mechanisms and Robots (ReMAR). pp. 1–6. IEEE, Delft, Netherlands (2018)

  19. Peralta, R., Johari, H.: Geometry of a ram-air parachute canopy in steady flight from numerical simulations. In: 23rd AIAA Aerodynamic Decelerator Systems Technology Conference. p. 2103. , Daytona Beach, FL (2015)

  20. Tang, W., Johari, H.: Deformation of a ram-air canopy due to control line retraction. In: 24th AIAA Aerodynamic Decelerator Systems Technology Conference, 2017. pp. 1–10 (2017)

  21. Zhang, S.Y., Yu, L., Wu, Z.H., Jia, H., Liu, X.: Numerical investigation of ram-air parachutes inflation with fluid-structure interaction method in wind environments. Aerosp. Sci. Technol. 109, 106400 (2021)

    Article  Google Scholar 

  22. Nie, S., Cao, Y., Wu, Z.: Numerical simulation of parafoil inflation via a Robin-Neumann transmission-based approach. Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. 232, 797–810 (2018)

    Article  Google Scholar 

  23. Wang, L., He, W.: Analytical study on deformation and structural safety of parafoil. Int. J. Aerosp. Eng. 2018, 7 (2018)

    Article  Google Scholar 

  24. Zhang, C., Cao, Y.: Numerical simulation of parafoil aerodynamics and structural deformation based on loose coupled method. J. Beijing Univ. Aeronaut. Astronaut. 39, 605–609 (2013)

    Google Scholar 

  25. Takizawa, K., Tezduyar, T.E., Terahara, T.: Ram-air parachute structural and fluid mechanics computations with the space-time isogeometric analysis (ST-IGA). Comput. Fluids. 141, 191–200 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  26. Kanarska, Y., Schofield, S., Dunn, T., Liu, B., Noble, C.: Advanced multi-domain method for multiphase flow interaction with Lagrangian structural meshes. Comput. Math. with Appl. 78, 598–610 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  27. Le Garrec, M., Seulin, M., Lapoujade, V.: Airdrop sequence simulation using LS-DYNA ICFD solver and FSI coupling. In: 15th International LS-DYNA Users Conference. pp. 1–17 (2018)

  28. Garrec, M. LE, Poncet, A., Lapoujade, V.: Parachute deployment simulations using LS-DYNA ICFD solver and strong FSI coupling. In: 12th European LS-DYNA Conference. , Koblenz, Germany (2019)

  29. Zhu, H., Sun, Q., Liu, X., Liu, J., Sun, H., Wu, W., Tan, P., Chen, Z.: Fluid-structure interaction-based aerodynamic modeling for flight dynamics simulation of parafoil system. Nonlinear Dyn. 104, 3445–3466 (2021)

    Article  Google Scholar 

  30. Slegers, N., Costello, M.: Model predictive control of a parafoil and payload system. J. Guid. Control. Dyn. 28, 816–821 (2005)

    Article  Google Scholar 

  31. Landis, T.: X-38 glides to a lakebed landing. NASA Armstrong Flight Research Center. http://www.nasa.gov/centers/armstrong/multimedia/imagegallery/X-38/index.html (1999). Accessed 30 Oct 2022

  32. Bauchau, O.A.: Flexible multibody dynamics. Springer, Dordrecht, USA (2011)

    Book  MATH  Google Scholar 

  33. Winter, O., Sváček, P.: On numerical simulation of flexibly supported airfoil in interaction with incompressible fluid flow using laminar-turbulence transition model. Comput. Math. Appl. 83, 57–73 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  34. Lee, H., Xu, S.: Fully discrete error estimation for a quasi-Newtonian fluid-structure interaction problem. Comput. Math. Appl. 71, 2373–2388 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  35. Ashton, N., Skaperdas, V.: Verification and validation of OpenFOAM for high-lift aircraft flows. J. Aircr. 56, 1641–1657 (2019)

    Article  Google Scholar 

  36. Spalart, P., Allmaras, S.: A one-equation turbulence model for aerodynamic flows. In: 30th Aerospace Sciences Meeting and Exhibit. Reno, NV, USA. (1992)

  37. Charles, R.D.: Simulation of the baseline characteristics of a ram-air parachute. In: 24th AIAA Aerodynamic Decelerator Systems Technology Conference. p. 3543. AIAA AVIATION Forum, Denver, Colorado (2017)

  38. Fetter, A.L., Walecka, J.D.: Theoretical mechanics of particles and continua. Courier Corporation, Dover, Mineola, NY (2003)

    MATH  Google Scholar 

  39. Barrows, T.M.: Apparent mass of parafoils with spanwise camber. J. Aircr. 39, 445–451 (2002)

    Article  Google Scholar 

  40. Ochi, Y., Watanabe, M.: Modelling and simulation of the dynamics of a powered paraglider. Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng 225, 373–386 (2011)

    Article  Google Scholar 

  41. Gao, X., Zhang, Q., Tang, Q.: Parachute dynamics and perturbation analysis of precision airdrop system. Chinese J. Aeronaut. 29, 596–607 (2016)

    Article  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Grant Nos. 61973172, 61973175, 62003175, and 62003177), the Key Technologies Research and Development Program of Tianjin (Grant No. 19JCZDJC32800), and the Research and Innovation Project for Postgraduates in Tianjin (Grant No. 2021YJSO2B02). Additionally, this project was funded by the China Scholarship Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao Sun.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, H., Sun, Q., Sun, H. et al. Aerodynamic prediction for flight dynamics simulation of parafoil system and airdrop test validation. Nonlinear Dyn 111, 11065–11085 (2023). https://doi.org/10.1007/s11071-023-08442-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-08442-6

Keywords

Navigation