Skip to main content
Log in

\(\varvec{N}\)-soliton, breathers, lumps and interaction solutions for a time-variable coefficients integrable equation in Kadomtsev–Petviashvili hierarchy

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Considering the inhomogeneity of propagation media, the nonlinear integrable equations with variable coefficients have attracted much attention in recent years since they can model various physical phenomena in the real world more accurately. In this paper, a nonlinear integrable equation with time-variable coefficients in the Kadomtsev–Petviashvili hierarchy is investigated. By introducing specific variable transformation, the discussed equation is written into one differential equation with respect to the auxiliary function. This process is similar to the bilinearization in the Hirota bilinear method. Based on the perturbation approach, the N-soliton solutions are obtained, and the M-breather solutions are derived by imposing specific constraints on parameters. The lump solution is constructed by using the generalized positive quadratic function method. Besides, the long wave limit method is utilized to explore the T-lump solutions of this integrable equation. In addition, the 3D graphics of the solitons, breathers, lumps and their interaction are drawn to exhibit the physical properties of these solutions. These figures reflect that the time-variable coefficient leads to many novel dynamic behaviors, which are rather different from those for constant coefficient integrable equation. It should be pointed that the solution is the same as the general constant coefficients equations only in the case of the time-variable function as a constant. Therefore, the results obtained in this paper are more advantageous for the analysis of the complex physical applications governed by this model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability Statement

Data sharing is not applicable to this article as no new data were created or analyzed in this paper.

References

  1. Ablowitz, M.J., Segur, H.: Solitons and the inverse scattering transform. SIAM, Philadelphia (1981)

    MATH  Google Scholar 

  2. Scott, A.C., Chu, F.Y.F., McLaughlin, D.W.: The soliton: a new concept in applied science. Proc. IEEE 61(10), 1443–1483 (1973)

    MathSciNet  Google Scholar 

  3. Ablowitz, M.J., Clarkson, P.A.: Solitons, nonlinear evolution equations and inverse scattering. Cambridge University Press, Cambridge (1991)

    MATH  Google Scholar 

  4. Constantin, A., Gerdjikov, V.S., Ivanov, R.I.: Inverse scattering transform for the Camassa-Holm equation. Inverse Probl. 22(6), 2197 (2006)

    MathSciNet  MATH  Google Scholar 

  5. Li, J., Xia, T.C.: Darboux transformation to the nonlocal complex short pulse equation. Appl. Math. Lett. 126, 107809 (2022)

    MathSciNet  MATH  Google Scholar 

  6. Matveev, V.B., Salle, M.A.: Darboux transformations and solitons. Springer, Berlin (1991)

    MATH  Google Scholar 

  7. Cheng, C.D., Tian, B., Zhang, C.R., Zhao, X.: Bilinear form, soliton, breather, hybrid and periodic-wave solutions for a (3+1)-dimensional Korteweg-de Vries equation in a fluid. Nonlinear Dyn. 105(3), 2525–2538 (2021)

    Google Scholar 

  8. Guo, H.D., Xia, T.C., Hu, B.B.: High-order lumps, high-order breathers and hybrid solutions for an extended (3+1)-dimensional Jimbo-Miwa equation in fluid dynamics. Nonlinear Dyn. 100(1), 601–614 (2020)

    MATH  Google Scholar 

  9. Hosseini, K., Salahshour, S., Baleanu, D., Mirzazadeh, M., Dehingia, K.: A new generalized KdV equation: its lump-type, complexiton and soliton solutions. Int. J. Modern Phys. B. 36(31), 2250229 (2022)

    Google Scholar 

  10. Fokas, A.S.: A unified transform method for solving linear and certain nonlinear PDEs. Proc. R Soc. London Series A: Math., Phys. Eng. Sci. 453(1962), 1411–1443 (1997)

    MathSciNet  MATH  Google Scholar 

  11. Yang, Y.L., Fan, E.G.: Riemann-Hilbert approach to the modified nonlinear Schrödinger equation with non-vanishing asymptotic boundary conditions. Phys. D 417, 132811 (2021)

    MATH  Google Scholar 

  12. Zhang, N., Xia, T.C., Fan, E.G.: A Riemann-Hilbert approach to the Chen-Lee-Liu equation on the half line. Acta Math. Appl. Sin. Engl. Ser. 34(3), 493–515 (2018)

    MathSciNet  MATH  Google Scholar 

  13. Akbar, M.A., Abdullah, F.A., Islam, M.T., Sharif, M.A., Osman, M.S.: New solutions of the soliton type of shallow water waves and superconductivity models. Results Phys. 44, 106180 (2023)

    Google Scholar 

  14. Nisar, K.S., Ilhan, O.A., Abdulazeez, S.T., Manafian, J., Mohammed, S.A., Osman, M.S.: Novel multiple soliton solutions for some nonlinear PDEs via multiple Exp-function method. Results Phys. 21, 103769 (2021)

    Google Scholar 

  15. Gomes, J.F., Retore, A.L., Zimerman, A.H.: Miura and generalized Bäcklund transformation for KdV hierarchy. J. Phys. A: Math. Theor. 49(50), 504003 (2016)

    MATH  Google Scholar 

  16. Wahlquist, H.D., Estabrook, F.B.: Bäcklund transformation for solutions of the Korteweg-de Vries equation. Phys. Rev. Lett. 31(23), 1386 (1973)

    MathSciNet  Google Scholar 

  17. Its, A.R., Matveev, V.B.: Schrödinger operators with finite-gap spectrum and N-soliton solutions of the Korteweg-de Vries equation. Teor. Mat. Fiz. 23(1), 51–68 (1975)

    Google Scholar 

  18. Hirota, R.: The direct method in soliton theory. Cambridge University Press, New York (2004)

    MATH  Google Scholar 

  19. Kadomtsev, B.B., Petviashvili, V.I.: On the stability of solitary waves in weakly dispersing media. Dokl. Akad. Nauk SSSR 192(4), 753–756 (1970)

    MATH  Google Scholar 

  20. Ma, W.X.: Lump solutions to the Kadomtsev-Petviashvili equation. Phys. Lett. A 379(36), 1975–1978 (2015)

    MathSciNet  MATH  Google Scholar 

  21. Zhao, H.Q., Ma, W.X.: Mixed lump-kink solutions to the KP equation. Comput. Math. Appl. 74(6), 1399–1405 (2017)

    MathSciNet  MATH  Google Scholar 

  22. Sato, M.: Soliton equations as dynamical system on an infinite dimensional dimensional Grassmann manifold. RIMS Kokyuroku. 489, 30–46 (1981)

    Google Scholar 

  23. Nimmo, J.J.C., Freeman, N.C.: A method of obtaining the N-soliton solution of the Boussinesq equation in terms of a Wronskian. Phys. Lett. A 95(1), 4–6 (1983)

    MathSciNet  Google Scholar 

  24. Ohta, Y., Nakamura, A.: Similarity KP equation and various different representations of its solutions. J. Phys. Soc. Jpn. 61(12), 4295–4313 (1992)

    MathSciNet  Google Scholar 

  25. Lou, S.Y., Chen, D.F., Chen, W.Z.: Similarity reductions of the KP equation by a direct method. J. Phys. A: Math. General. 24(7), 1455 (1991)

    MathSciNet  MATH  Google Scholar 

  26. Yang, B., Yang, J.K.: Overview of the Kadomtsev-Petviashvili-hierarchy reduction method for solitons. Partial Differ Equ. Appl. Math. 5, 100346 (2022)

    Google Scholar 

  27. Ma, Y.L., Wazwaz, A.M., Li, B.Q.: New extended Kadomtsev-Petviashvili equation: multiple soliton solutions, breather, lump and interaction solutions. Nonlinear Dyn. 104(2), 1581–1594 (2021)

    Google Scholar 

  28. Guo, H.D., Xia, T.C., Ma, W.X.: Localized waves and interaction solutions to an extended (3+1)-dimensional Kadomtsev-Petviashvili equation. Modern Phys. Lett. B. 34(06), 2050076 (2020)

    MathSciNet  Google Scholar 

  29. Sun, B.N., Wazwaz, A.M.: General high-order breathers and rogue waves in the (3+1)-dimensional KP-Boussinesq equation. Commun. Nonlinear Sci. Numer. Simul. 64, 1–13 (2018)

    MathSciNet  MATH  Google Scholar 

  30. Hosseini, K., Baleanu, D., Rezapour, S., Salahshour, S., Mirzazadeh, M., Samavat, M.: Multi-complexiton and positive multi-complexiton structures to a generalized B-type Kadomtsev- Petviashvili equation. J. Ocean Eng. Sci. (2022). https://doi.org/10.1016/j.joes.2022.06.020

    Article  Google Scholar 

  31. Adeyemo, O.D., Khalique, C.M.: Dynamics of soliton waves of group-invariant solutions through optimal system of an extended KP-like equation in higher dimensions with applications in medical sciences and mathematical physics. J. Geom. Phys. 177, 104502 (2022)

    MathSciNet  MATH  Google Scholar 

  32. Wang, X.L., Yu, L., Yang, Y.X., Chen, M.R.: On generalized Lax equation of the Lax triple of KP hierarchy. J. Nonlin. Math. Phys. 22(2), 194–203 (2015)

    MathSciNet  MATH  Google Scholar 

  33. Wazwaz, A.M.: Kadomtsev-Petviashvili hierarchy: N-soliton solutions and distinct dispersion relations. Appl. Math. Lett. 52, 74–79 (2016)

    MathSciNet  MATH  Google Scholar 

  34. Ma, Z.Y., Chen, J.C., Fei, J.X.: Lump and line soliton pairs to a (2+1)-dimensional integrable Kadomtsev-Petviashvili equation. Comput. Math. Appl. 76(5), 1130–1138 (2018)

    MathSciNet  MATH  Google Scholar 

  35. Wazwaz, A.M., Xu, G.Q.: Kadomtsev-Petviashvili hierarchy: two integrable equations with time-dependent coefficients. Nonlinear Dyn. 100(4), 3711–3716 (2020)

    Google Scholar 

  36. Ismael, H.F., Murad, M.A.S., Bulut, H.: Various exact wave solutions for KdV equation with time-variable coefficients. J. Ocean Eng. Sci. 7(5), 409–418 (2022)

    Google Scholar 

  37. Li, Q.Q., Shan, W.R., Wang, P.P., Cui, H.G.: Breather, lump and N-soliton wave solutions of the (2+1)-dimensional coupled nonlinear partial differential equation with variable coefficients. Commun. Nonlinear Sci. Numer. Simul. 106, 106098 (2022)

  38. Jaradat, H.M., Al-Shara, S., Awawdeh, F., Alquran, M.: Variable coefficient equations of the Kadomtsev-Petviashvili hierarchy: multiple soliton solutions and singular multiple soliton solutions. Phys. Scripta. 85(3), 035001 (2012)

  39. Zeng, S.J., Liu, Y.Q., Chen, X., Zhang, W.X.: Various breathers, lumps, line solitons and their interaction solutions for the (2+1)-dimensional variable-coefficient Sawada-Kotera equation. Results Phys. 42, 105992 (2022)

    Google Scholar 

  40. Kaur, L., Wazwaz, A.M.: Optical soliton solutions of variable coefficient Biswas-Milovic (BM) model comprising Kerr law and damping effect. Optik 266, 169617 (2022)

  41. Kumar, S., Mohan, B.: A study of multi-soliton solutions, breather, lumps, and their interactions for kadomtsev-petviashvili equation with variable time coeffcient using hirota method. Phys. Scripta. 96(12), 125255 (2021)

    Google Scholar 

  42. Liu, J.G., Wazwaz, A.M., Zhu, W.H.: Solitary and lump waves interaction in variable-coefficient nonlinear evolution equation by a modified ansätz with variable coefficients. J. Appl. Anal. Comput. 12(2), 517–532 (2022)

  43. Wu, J.P.: N-soliton, M-breather and hybrid solutions of a time-dependent Kadomtsev-Petviashvili equation. Math. Comput. Simul. 194, 89–96 (2022)

    MathSciNet  MATH  Google Scholar 

  44. Xu, H., Ma, Z.Y., Fei, J.X., Zhu, Q.Y.: Novel characteristics of lump and lump-soliton interaction solutions to the generalized variable-coefficient Kadomtsev-Petviashvili equation. Nonlinear Dyn. 98(1), 551–560 (2019)

    MATH  Google Scholar 

  45. Kang, Z.Z., Xia, T.C.: Construction of abundant solutions of the (2+1)-dimensional time-dependent Date-Jimbo-Kashiwara-Miwa equation. Appl. Math. Lett. 103, 106163 (2020)

    MathSciNet  MATH  Google Scholar 

  46. Kumar, S., Dhiman, S.K., Baleanu, D., Osman, M.S., Wazwaz, A.M.: Lie symmetries, closed-form solutions, and various dynamical profiles of solitons for the variable coefficient (2+1)-dimensional KP equations. Symmetry. 14(3), 597 (2022)

    Google Scholar 

  47. Zhang, Y., Liu, Y.P., Tang, X.Y.: M-lump and interactive solutions to a (3+1)-dimensional nonlinear system. Nonlinear Dyn. 93(4), 2533–2541 (2018)

    MATH  Google Scholar 

Download references

Funding

The authors are grateful to the Editors and the Reviewers for their invaluable comments and suggestions, which have greatly improved the quality of this paper. The work is supported by the National Natural Science Foundation of China under Grant No. 11975145.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tongshuai Liu.

Ethics declarations

Conflicts of interest

The authors declare that there are no conflict of interest in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, T., Xia, T. \(\varvec{N}\)-soliton, breathers, lumps and interaction solutions for a time-variable coefficients integrable equation in Kadomtsev–Petviashvili hierarchy. Nonlinear Dyn 111, 11481–11495 (2023). https://doi.org/10.1007/s11071-023-08430-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-08430-w

Keywords

Mathematics Subject Classification

Navigation