Skip to main content
Log in

Model reduction of rotor-foundation systems using the approximate invariant manifold method

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This work presents a model reduction method suited for performing nonlinear dynamic analysis of high-dimensional rotor-foundation systems modeled by the finite element method. The approach consists in combining the component mode synthesis (CMS) method with the approximate invariant manifold method (AIMM), and allows the obtention of forced responses through the integration of a single pair of ordinary differential equations. The proposed approach is tested using two examples: a simple and a complex rotor-foundation system. In both cases, the nonlinearity comes from the fluid-film bearings. The results show that the method can provide a significant reduction in numerical cost while still retaining good accuracy when compared to direct time integrations. By means of the proposed method, the nonlinear dynamic analysis of high-dimensional rotor-foundation system becomes a feasible option.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

Data availability

The datasets generated during and analyzed during the current study are not publicly available but are available from the corresponding author on reasonable request.

References

  1. Nicholas, J.C., Barrett, L.E.: The effect of bearing support flexibility on critical speed prediction. ASLE Transactions 29(3), 329–338 (1986). https://doi.org/10.1080/05698198608981693

    Article  Google Scholar 

  2. Kang, Y., Chang, Y.P., Tsai, J.W., Mu, L.H., Chang, Y.F.: An investigation in stiffness effects on dynamics of rotor-bearing-foundation systems. J. Sound Vib. 231(2), 343–374 (2000). https://doi.org/10.1006/jsvi.1999.2719

    Article  Google Scholar 

  3. Vance, J.M., Murphy, B., Zeidan, F.: Machinery Vibration and Rotordynamics. Wiley, Hoboken (2010)

    Book  Google Scholar 

  4. Muszynska, A.: Stability of whirl and whip in rotor/bearing systems. J. Sound Vib. 127(1), 49–64 (1988). https://doi.org/10.1016/0022-460X(88)90349-5

    Article  MathSciNet  Google Scholar 

  5. de Castro, H.F., Cavalca, K.L., Nordmann, R.: Whirl and whip instabilities in rotor-bearing system considering a nonlinear force model. J. Sound Vib. 317(1–2), 273–293 (2008). https://doi.org/10.1016/j.jsv.2008.02.047

    Article  Google Scholar 

  6. Lund, J.W.: The stability of an elastic rotor in journal bearings with flexible, damped supports. J. Appl. Mech. 32(4), 911–920 (1965). https://doi.org/10.1115/1.3627335

    Article  Google Scholar 

  7. Chasalevris, A.: Stability and Hopf bifurcations in rotor-bearing-foundation systems of turbines and generators. Tribol. Int. 145, 106–154 (2020). https://doi.org/10.1016/j.triboint.2019.106154

    Article  Google Scholar 

  8. Gavalas, I., Chasalevris, A.: Nonlinear dynamics of turbine generator shaft trains: evaluation of bifurcation sets applying numerical continuation. J. Eng. Gas Turbines Power (2022). https://doi.org/10.1115/1.4055533

    Article  Google Scholar 

  9. Štimac, G., Braut, S., Žigulić, R.: Optimization of the machine foundation using frequency constraints. Struct. Multidiscip. Optim. 50(1), 147–157 (2014). https://doi.org/10.1007/s00158-014-1052-8

    Article  Google Scholar 

  10. Bhattacharya, S.: In: Rao, A.R.M., Ramanjaneyulu, K. (eds.) Recent Advances in Structural Engineering. Lecture Notes in Civil Engineering, vol. 1, pp. 3–17. Springer, Singapore (2019). https://doi.org/10.1007/978-981-13-0362-3_1

  11. Gasch, R.: Vibration of large turbo-rotors in fluid-film bearings on an elastic foundation. J. Sound Vib. 47(1), 53–73 (1976). https://doi.org/10.1016/0022-460X(76)90407-7

    Article  MATH  Google Scholar 

  12. Bonello, P., Brennan, M.J.: Modelling the dynamic behaviour of a supercritical rotor on a flexible foundation using the mechanical impedance technique. J. Sound Vib. 239(3), 445–466 (2001). https://doi.org/10.1006/jsvi.2000.3172

    Article  Google Scholar 

  13. Cavalca, K.L., Okabe, E.P.: In: Gupta, K. (ed.) IUTAM Symposium on Emerging Trends in Rotor Dynamics, pp. 89–101. Springer, Netherlands, Dordrecht (2011). https://doi.org/10.1007/978-94-007-0020-8_8

  14. Cavalca, K.L., Cavalcante, P.F., Okabe, E.P.: An investigation on the influence of the supporting structure on the dynamics of the rotor system. Mech. Syst. Signal Process. 19(1), 157–174 (2005). https://doi.org/10.1016/j.ymssp.2004.04.001

    Article  Google Scholar 

  15. Edwards, S., Lees, A.W., Friswell, M.I.: Experimental identification of excitation and support parameters of a flexible rotor-bearings-foundation system from a single run-down. J. Sound Vib. 232(5), 963–992 (2000). https://doi.org/10.1006/jsvi.1999.2779

    Article  Google Scholar 

  16. Saint Martin, L.B., Gusmão, L.L., Machado, T.H., Okabe, E.P., Cavalca, K.L.: Operational modal analysis application to support structure identification under rotating machinery unbalance. Eng. Struct. 249, 113344 (2021). https://doi.org/10.1016/j.engstruct.2021.113344

    Article  Google Scholar 

  17. Power, R.B., Wood, D.E.: 2000-hp Motor support structure vibration sensitivity: tests, finite element analysis, and suggested strategies for prevention. J. Vib. Acoust. Stress. Reliab. Des. 106(1), 113–121 (1984). https://doi.org/10.1115/1.3269139

    Article  Google Scholar 

  18. Kuemmlee, H., Siegl, G., Woywode, P.: In: 2008 5th Petroleum and Chemical Industry Conference Europe - Electrical and Instrumentation Applications, pp. 1–8. IEEE, Weimar (2008). https://doi.org/10.1109/PCICEUROPE.2008.4563530

  19. Hajžman, M., Balda, M., Polcar, P., Polach, P.: Turbine rotor dynamics models considering foundation and stator effects. Machines 10(2), 77 (2022). https://doi.org/10.3390/machines10020077

    Article  Google Scholar 

  20. Craig, R.R., Jr.: Substructure methods in vibration. J. Vib. Acoust. 117(B), 207–213 (1995). https://doi.org/10.1115/1.2838665

    Article  Google Scholar 

  21. Allen, M.S., Rixen, D., van der Seijs, M., Tiso, P., Abrahamsson, T., Mayes, R.L.: Substructuring in Engineering Dynamics: Emerging Numerical and Experimental Techniques. In: CISM International Centre for Mechanical Sciences, vol. 594. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-25532-9

  22. Craig, R.R., Bampton, M.C.C.: Coupling of substructures for dynamic analyses. AIAA J. 6(7), 1313–1319 (1968). https://doi.org/10.2514/3.4741

    Article  MATH  Google Scholar 

  23. Macneal, R.H.: A hybrid method of component mode synthesis. Comput. Struct. 1(4), 581–601 (1971). https://doi.org/10.1016/0045-7949(71)90031-9

    Article  Google Scholar 

  24. Rubin, S.: Improved component-mode representation for structural dynamic analysis. AIAA J. 13(8), 995–1006 (1975). https://doi.org/10.2514/3.60497

    Article  MATH  Google Scholar 

  25. Seshu, P.: Substructuring and component mode synthesis. Shock. Vib. 4(3), 199–210 (1997). https://doi.org/10.3233/SAV-1997-4306

    Article  Google Scholar 

  26. de Klerk, D., Rixen, D.J., Voormeeren, S.N.: General framework for dynamic substructuring: history, review and classification of techniques. AIAA J. 46(5), 1169–1181 (2008). https://doi.org/10.2514/1.33274

    Article  Google Scholar 

  27. Shaw, S., Pierre, C.: Normal modes for non-linear vibratory systems. J. Sound Vib. 164(1), 85–124 (1993). https://doi.org/10.1006/jsvi.1993.1198

    Article  MATH  Google Scholar 

  28. Shaw, S.W.: An invariant manifold approach to nonlinear normal modes of oscillation. J. Nonlinear Sci. 4(1), 419–448 (1994). https://doi.org/10.1007/BF02430640

    Article  MathSciNet  MATH  Google Scholar 

  29. Haller, G., Ponsioen, S.: Nonlinear normal modes and spectral submanifolds: existence, uniqueness and use in model reduction. Nonlinear Dyn. 86(3), 1493–1534 (2016). https://doi.org/10.1007/s11071-016-2974-z

    Article  MathSciNet  MATH  Google Scholar 

  30. Touzé, C., Vizzaccaro, A., Thomas, O.: Model order reduction methods for geometrically nonlinear structures: a review of nonlinear techniques. Nonlinear Dyn. 105(2), 1141–1190 (2021). https://doi.org/10.1007/s11071-021-06693-9

    Article  Google Scholar 

  31. Renson, L., Kerschen, G., Cochelin, B.: Numerical computation of nonlinear normal modes in mechanical engineering. J. Sound Vib. 364, 177–206 (2016). https://doi.org/10.1016/j.jsv.2015.09.033

    Article  Google Scholar 

  32. Mazzilli, C.E.N., Gonçalves, P.B., Franzini, G.R.: Reduced-order modelling based on non-linear modes. Int. J. Mech. Sci. 214, 106915 (2022). https://doi.org/10.1016/j.ijmecsci.2021.106915

    Article  Google Scholar 

  33. Avramov, K., Avramov, K.V., Mikhlin, Y.V.: Review of applications of nonlinear normal modes for vibrating mechanical systems. Appl. Mech. Rev. 65(2), 020801 (2013). https://doi.org/10.1115/1.4023533

    Article  Google Scholar 

  34. Albu-Schäffer, A., Della Santina, C.: A review on nonlinear modes in conservative mechanical systems. Annu. Rev. Control 50, 49–71 (2020). https://doi.org/10.1016/j.arcontrol.2020.10.002

    Article  MathSciNet  Google Scholar 

  35. Gabale, A.P., Sinha, S.C.: Model reduction of nonlinear systems with external periodic excitations via construction of invariant manifolds. J. Sound Vib. 330(11), 2596–2607 (2011). https://doi.org/10.1016/j.jsv.2010.12.013

    Article  Google Scholar 

  36. Ponsioen, S., Pedergnana, T., Haller, G.: Automated computation of autonomous spectral submanifolds for nonlinear modal analysis. J. Sound Vib. 420, 269–295 (2018). https://doi.org/10.1016/j.jsv.2018.01.048

    Article  Google Scholar 

  37. Jain, S., Haller, G.: How to compute invariant manifolds and their reduced dynamics in high-dimensional finite element models. Nonlinear Dyn. 107(2), 1417–1450 (2022). https://doi.org/10.1007/s11071-021-06957-4

    Article  Google Scholar 

  38. Haro, À., Canadell, M., Figueras, J.L., Luque, A., Mondelo, J.M.: The parameterization method for invariant manifolds: from rigorous results to effective computations. In: Applied Mathematical Sciences, vol. 195. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-29662-3

    Chapter  Google Scholar 

  39. Vizzaccaro, A., Opreni, A., Salles, L., Frangi, A., Touzé, C.: High order direct parametrisation of invariant manifolds for model order reduction of finite element structures: application to large amplitude vibrations and uncovering of a folding point. Nonlinear Dyn. 110(1), 525–571 (2022). https://doi.org/10.1007/s11071-022-07651-9

    Article  Google Scholar 

  40. Pesheck, E., Pierre, C., Shaw, S.: A new Galerkin-based approach for accurate non-linear normal modes through invariant manifolds. J. Sound Vib. 249(5), 971–993 (2002). https://doi.org/10.1006/jsvi.2001.3914

    Article  MathSciNet  MATH  Google Scholar 

  41. Jiang, D., Pierre, C., Shaw, S.W.: Nonlinear normal modes for vibratory systems under harmonic excitation. J. Sound Vib. 288(4), 791–812 (2005). https://doi.org/10.1016/j.jsv.2005.01.009

    Article  Google Scholar 

  42. Legrand, M., Jiang, D., Pierre, C., Shaw, S.: Nonlinear normal modes of a rotating shaft based on the invariant manifold method. Int. J. Rotating Mach. 10(4), 319–335 (2004). https://doi.org/10.1080/10236210490447773

    Article  Google Scholar 

  43. Renson, L., Deliége, G., Kerschen, G.: An effective finite-element-based method for the computation of nonlinear normal modes of nonconservative systems. Meccanica 49(8), 1901–1916 (2014). https://doi.org/10.1007/s11012-014-9875-3

    Article  MathSciNet  MATH  Google Scholar 

  44. Blanc, F., Touzé, C., Mercier, J.F., Ege, K., Bonnet Ben-Dhia, A.S.: On the numerical computation of nonlinear normal modes for reduced-order modelling of conservative vibratory systems. Mech. Syst. Signal Process. 36(2), 520–539 (2013). https://doi.org/10.1016/j.ymssp.2012.10.016

    Article  Google Scholar 

  45. Krämer, E.: Dynamics of Rotors and Foundations. Springer, Berlin (1993)

    Book  Google Scholar 

  46. Ishida, Y., Yamamoto, T.: Linear and Nonlinear Rotordynamics: A Modern Treatment with Applications, 2nd edn. Wiley-VCH, Weinheim (2012)

    Book  Google Scholar 

  47. Wang, J.K., Khonsari, M.M.: Bifurcation analysis of a flexible rotor supported by two fluid-film journal bearings. J. Tribol. 128(3), 594–603 (2006). https://doi.org/10.1115/1.2197842

    Article  Google Scholar 

  48. Miraskari, M., Hemmati, F., Gadala, M.S.: Nonlinear dynamics of flexible rotors supported on journal bearings-part I: analytical bearing model. J. Tribol. (2017). https://doi.org/10.1115/1.4037730

    Article  MATH  Google Scholar 

  49. Lee, C.W.: Vibration Analysis of Rotors, 1st edn. Springer, Dordrecht (1993)

    Book  Google Scholar 

  50. Gruber, F.M., Rixen, D.J.: Evaluation of substructure reduction techniques with fixed and free interfaces. Strojniški vestnik - J. Mech. Eng. 62(7–8), 452–462 (2016). https://doi.org/10.5545/sv-jme.2016.3735

    Article  Google Scholar 

  51. Joannin, C., Thouverez, F., Chouvion, B.: Reduced-order modelling using nonlinear modes and triple nonlinear modal synthesis. Comput. Struct. 203, 18–33 (2018). https://doi.org/10.1016/j.compstruc.2018.05.005

    Article  Google Scholar 

  52. Yuan, J., Sun, Y., Schwingshackl, C., Salles, L.: Computation of damped nonlinear normal modes for large scale nonlinear systems in a self-adaptive modal subspace. Mech. Syst. Signal Process. 162, 108082 (2022)

    Article  Google Scholar 

  53. Krack, M., Salles, L., Thouverez, F.: Vibration prediction of bladed disks coupled by friction joints. Arch. Comput. Methods Eng. 24(3), 589–636 (2017). https://doi.org/10.1007/s11831-016-9183-2

    Article  MATH  Google Scholar 

  54. Meirovitch, L.: Computational Methods in Structural Dynamics, vol. 5. Sjithoff & Noordhoff International Publishers, Rockville (1980)

    MATH  Google Scholar 

  55. Boyd, J.P.: Chebyshev and Fourier Spectral Methods, 2nd edn. Dover Publications, Mineola (2001)

    MATH  Google Scholar 

  56. Fletcher, C.A.J.: Computational Galerkin Methods. Springer, Berlin (2014)

    Google Scholar 

  57. Shampine, L.F., Reichelt, M.W.: The MATLAB ODE suite. SIAM J. Sci. Comput. 18(1), 1–22 (1997). https://doi.org/10.1137/S1064827594276424

    Article  MathSciNet  MATH  Google Scholar 

  58. Jiang, D., Pierre, C., Shaw, S.W.: The construction of non-linear normal modes for systems with internal resonance. Int. J. Non-Linear Mech. 40(5), 729–746 (2005). https://doi.org/10.1016/j.ijnonlinmec.2004.08.010

    Article  MATH  Google Scholar 

  59. Opreni, A., Vizzaccaro, A., Touzé, C., Frangi, A.: High-order direct parametrisation of invariant manifolds for model order reduction of finite element structures: application to generic forcing terms and parametrically excited systems. Nonlinear Dyn. 111(6), 5401–5447 (2023). https://doi.org/10.1007/s11071-022-07978-3

    Article  Google Scholar 

  60. Mereles, A., Cavalca, K.L.: Modeling of multi-stepped rotor-bearing systems by the continuous segment method. Appl. Math. Model. 96, 402–430 (2021). https://doi.org/10.1016/j.apm.2021.03.001

    Article  MathSciNet  MATH  Google Scholar 

  61. Mereles, A., Alves, D.S., Cavalca, K.L.: Continuous model applied to multi-disk and multi-bearing rotors. J. Sound Vib. 537, 117203 (2022). https://doi.org/10.1016/j.jsv.2022.117203

  62. Cook, R.D., Malkus, D.S., Plesha, M.E.: Concepts and Applications of Finite Element Analysis, 3rd edn. Wiley, New York (1989)

    MATH  Google Scholar 

  63. Kerschen, G., Golinval, J.C., Vakakis, A.F., Bergman, L.A.: The method of proper orthogonal decomposition for dynamical characterization and order reduction of mechanical systems: an overview. Nonlinear Dyn. 41(1), 147–169 (2005). https://doi.org/10.1007/s11071-005-2803-2

    Article  MathSciNet  MATH  Google Scholar 

  64. Amsallem, D., Zahr, M.J., Washabaugh, K.: Fast local reduced basis updates for the efficient reduction of nonlinear systems with hyper-reduction. Adv. Comput. Math. 41(5), 1187–1230 (2015). https://doi.org/10.1007/s10444-015-9409-0

    Article  MathSciNet  MATH  Google Scholar 

  65. Prabith, K., Krishna, I.R.P.: The numerical modeling of rotor–stator rubbing in rotating machinery: a comprehensive review. Nonlinear Dyn. 101(2), 1317–1363 (2020). https://doi.org/10.1007/s11071-020-05832-y

    Article  Google Scholar 

  66. Ishida, Y., Nagasaka, I., Inoue, T., Lee, S.: Forced oscillations of a vertical continuous rotor with geometric nonlinearity. Nonlinear Dyn. 11(2), 107–120 (1996). https://doi.org/10.1007/BF00044997

    Article  Google Scholar 

  67. Hosseini, S.A.A., Khadem, S.E.: Analytical solution for primary resonances of a rotating shaft with stretching non-linearity. Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci. 222(9), 1655–1664 (2008). https://doi.org/10.1243/09544062JMES923

    Article  Google Scholar 

  68. Li, S., Xu, Q., Zhang, X.: Nonlinear dynamic behaviors of a rotor-labyrinth seal system. Nonlinear Dyn. 47(4), 321–329 (2007). https://doi.org/10.1007/s11071-006-9025-0

    Article  MATH  Google Scholar 

  69. Saeed, N.A., Eissa, M., El-Ganini, W.A.: Nonlinear oscillations of rotor active magnetic bearings system. Nonlinear Dyn. 74(1), 1–20 (2013). https://doi.org/10.1007/s11071-013-0967-8

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank CNPq (Grants #307941/2019-1 and #140275/2021-5) for the financial support to this research.

Funding

This work was funded by Conselho Nacional de Desenvolvimento Científico e Tecnológico (Grant Nos. 307941/2019-1, 140275/2021-5).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arthur Mereles.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mereles, A., Alves, D.S. & Cavalca, K.L. Model reduction of rotor-foundation systems using the approximate invariant manifold method. Nonlinear Dyn 111, 10743–10768 (2023). https://doi.org/10.1007/s11071-023-08421-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-08421-x

Keywords

Navigation