Skip to main content
Log in

Dynamical behavior and modulation instability of optical solitons in nonlinear directional couplers

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, we focus on the dynamical behavior and modulation instability of optical solitons in nonlinear directional couplers. The expressions of single soliton solutions are derived, and the hyperbolic secant-type pulse is used to excite the input channel. We discuss the dynamical behavior of single optical soliton in traditional directional and negative index material couplers with varying self-phase modulation. Subsequently, based on the linear stability analysis, the distribution of modulation instability gain is studied, and the effect of dispersion, nonlinearity and input power on modulation instability gain is given. It is worth noting that the physical information neural network algorithm performs well in simulating the transmission of an optical pulse in the coupler and leading to some novel optical waves. The results are helpful in understanding the generation of soliton-like excitation and lay a foundation for exploring novel optical soliton in nonlinear directional couplers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this published article.

References

  1. Jensen, S.: The nonlinear coherent coupler. Quantum Electron. IEEE J. 18, 1580–1583 (1982)

    Google Scholar 

  2. Sabini, J.P., Finlayson, N., Stegeman, G.I.: All-optical switching in nonlinear X junctions. Appl. Phys. Lett. 55(12), 1176–1178 (1989)

    Google Scholar 

  3. Aitchison, J.S.: All-optical switching in two cascaded nonlinear directional couplers. Opt. Lett. 20(7), 698–700 (1995)

    Google Scholar 

  4. Schmidt-Hattenberger, C., Trutschel, U., Lederer, F.: Nonlinear switching in multiple-core couplers. Opt. Lett. 16(5), 294–296 (1991)

    Google Scholar 

  5. Wa, P., Sitch, J.E., Mason, N.J., et al.: All optical multiple-quantum-well waveguide switch. Electron. Lett. 21(1), 26–28 (1985)

    Google Scholar 

  6. Menezes, J.W.M., Fraga, W.B.D., Ferreira, A.C., et al.: Logic gates based in two- and three-modes nonlinear optical fiber couplers. Opti. Quantum Electron. 39, 1191–1206 (2007)

    Google Scholar 

  7. Silva, M., Bastos, A.M., Sobrinho, C.S., et al.: Analytical and numerical studies of the performance of a nonlinear directional fiber coupler with periodically modulated dispersion. Opt. Fiber Technol. 12(2), 148–161 (2006)

    Google Scholar 

  8. Sobrinho, C.S., Ferreira, A.C., Menezes, J., et al.: Analysis of an optical logic gate using a symmetric coupler operating with pulse position modulation (PPM). Opt. Commun. 281(5), 1056–1064 (2008)

    Google Scholar 

  9. Ferreira, A.D.C., Sobrinho, C.S., Menezes, J.W.M., et al.: A performance study of an all-optical logic gate based in PAM-ASK. J. Modern Opt. 56(8), 1004–1013 (2009)

    MATH  Google Scholar 

  10. Fraga, W.B., Menezes, J., Silva, M., et al.: All optical logic gates based on an asymmetric nonlinear directional coupler. Opt. Commun. 262(1), 32–37 (2006)

    Google Scholar 

  11. Menezes, J.W.M., Fraga, W.B.D., Ferreira, A.C., et al.: Logic gates based in two and threemodes nonlinear optical fiber couplers. Opt. Quantum Electron. 39, 1191–1206 (2007)

    Google Scholar 

  12. Sobrinho, C.S., Ferreira, A.C., Menezes, J., et al.: Analysis of an optical logic gate using a symmetric coupler operating with pulse position modulation (PPM). Opt. Commun. 281(5), 1056–1064 (2008)

    Google Scholar 

  13. Saboia, K.D.A., Ferreira, A.C., Sobrinho, C.S., et al.: Optical cryptography under PPM-PAM modulation based in short optical pulses in an acoustic-optic tunable filter (AOTF). Opt. Quantum Electron. 41, 963–980 (2009)

    Google Scholar 

  14. Veselago, V.G., Lebedev, P.N., Veselago, V.G.: The electrodynamics of substances with simultaneously negative values of \(\epsilon \) and \(\mu \). Sov. Phys. Usp 10(4), 509–514 (1968)

    Google Scholar 

  15. Smith, D.R., Padilla, W.J., Vier, D.C., et al.: Composite medium with simultaneously negative permeability and permittivity. Phys. Rev. Lett. 84(18), 4184–4187 (2000)

    Google Scholar 

  16. Litchinitser, N.M., Gabitov, I.R., Maimistov, A.I.: Optical bistability in a nonlinear optical coupler with a negative index channel. Phys. Rev. Lett. 2007, 113902 (2007)

    Google Scholar 

  17. Ostroukhova, E.I., Maimistov, A.I.: Spatial distribution of the interacting Waves’ amplitudes under third harmonic generation in a negative-positive refractive medium. Opt. Spectrosc. 115(3), 378–383 (2013)

    Google Scholar 

  18. Ryzhov, M.S., Maimistov, A.I.: Gap soliton formation in a nonlinear anti-directional coupler. Quantum Electron. 42(11), 1034–1038 (2012)

    Google Scholar 

  19. Zeng, J., Zhou, J., Kurizki, G., et al.: Backward self-induced transparency in metamaterials. Phys. Rev. A 80(6), 3694–3697 (2009)

    Google Scholar 

  20. Nithyanandan, K., Porsezian, K., et al.: Multistability and switching in oppositely-directed saturated coupler. Opt. Commun. 416, 145–151 (2018)

    Google Scholar 

  21. Kaur, L., Wazwaz, A.M.: Optical soliton solutions of variable coefficient Biswas-Milovic (BM) model comprising Kerr law and damping effect. Optik 266, 169617 (2022)

    Google Scholar 

  22. Wazwaz, A.M., Albalawi, W., El-Tantawy, S.A.: Optical envelope soliton solutions for coupled nonlinear Schrödinger equations applicable to high birefringence fibers. Optik 255, 168673 (2022)

    Google Scholar 

  23. Wazwaz, A.M., El-Tantawy, S.A.: Bright and dark optical solitons for \((3+1)\)-dimensional hyperbolic nonlinear Schrödinger equation using a variety of distinct schemes. Optik 270, 170043 (2022)

    Google Scholar 

  24. Zhang, R.F., Li, M.C., Yin, H.M.: Rogue wave solutions and the bright and dark solitons of the \((3+1)\)-dimensional Jimbo-Miwa equation. Nonlinear Dyn. 103, 1071–1079 (2021)

    Google Scholar 

  25. Zhang, R.F., Bilige, S., Liu, J.G., et al.: Bright-dark solitons and interaction phenomenon for p-gBKP equation by using bilinear neural network method. Phys. Scr. 96(2), 025224 (2020)

    Google Scholar 

  26. Bespalov, V.I., Talanov, V.I.: Filamentary structure of light beams in nonlinear liquids. Sov. J. Exp. Theor. Phys. Lett. 3, 307 (1966)

    Google Scholar 

  27. Nithyanandan, K., Raja, R.V.J., Porsezian, K., et al.: Modulational instability with higher-order dispersion and walk-off in Kerr media with cross-phase modulation. Phys. Rev. A 86(2), 5946–5951 (2012)

    Google Scholar 

  28. Zhong, X.Q., Zhang, X.X., Cheng, K., et al.: Ultrashort pulse breaking in optical fiber with third-order dispersion and quintic nonlinearity. Chin. Phys. B 23(6), 064207 (2014)

    Google Scholar 

  29. Yi, P., Xiang, Y., Dai, X., et al.: Spatiotemporal instabilities in nonlinear asymmetric oppositely directional coupler with a negative-index metamaterial channel. Acta Opt. Sin. 82(4), 056605 (2012)

    Google Scholar 

  30. Tatsing, Patrick Herbert, et al.: Modulation instability in nonlinear positive-negative index couplers with saturable nonlinearity. JOSA B 29(12), 3218–3225 (2012)

    Google Scholar 

  31. Ali, A.K.S., Nithyanandan, K., Porsezian, K., et al.: Modulation instability in a triangular three-core coupler with a negative-index material channel. J. Opt. 18(3), 035102 (2016)

    Google Scholar 

  32. Copie, F., Randoux, S., Suret, P.: The Physics of the one-dimensional nonlinear Schrödinger equation in fiber optics: Rogue waves, modulation instability and self-focusing phenomena-ScienceDirect. Rev. Phys. 5, 100037 (2020)

    Google Scholar 

  33. Nasreen, N., Lu, D., Arshad, M.: Optical soliton solutions of nonlinear Schr?dinger equation with second order spatiotemporal dispersion and its modulation instability. Optik Int. J. Light Electron Opt. 161, 221–229 (2018)

    Google Scholar 

  34. Patel, A., Kumar, V.: Modulation instability analysis of a nonautonomous (3+1)-dimensional coupled nonlinear Schrödinger equation. Nonlinear Dyn. 104, 4355–4365 (2021)

    Google Scholar 

  35. Yue, Y., Huang, L.: Generalized coupled Fokas-Lenells equation: modulation instability, conservation laws, and interaction solutions. Nonlinear Dyn. 107(3), 2753–2771 (2022)

    Google Scholar 

  36. Lü, X., Hui, H.W., Liu, F.F., Bai, Y.L.: Stability and optimal control strategies for a novel epidemic model of COVID-19. Nonlinear Dyn. 106(2), 1491–1507 (2021)

    Google Scholar 

  37. Wang, D.S., Zhang, D.J., Yang, J.: Integrable properties of the general coupled nonlinear Schrödinger equations. J. Math. Phys. 51(2), 023510 (2010)

    MathSciNet  MATH  Google Scholar 

  38. Yin, M.Z., Zhu, Q.W., Lü, X.: Parameter estimation of the incubation period of COVID-19 based on the doubly interval-censored data model. Nonlinear Dyn. 106(2), 1347–1358 (2021)

    Google Scholar 

  39. Liu, B., Zhang, X.E., Wang, B., et al.: Rogue waves based on the coupled nonlinear Schrödinger option pricing model with external potential. Modern Phys. Lett. B 36(15), 2250057 (2022)

    Google Scholar 

  40. Yin, Y.H., Lü, X., Ma, W.X.: Bäcklund transformation, exact solutions and diverse interaction phenomena to a (3+ 1)-dimensional nonlinear evolution equation. Nonlinear Dyn. 108(4), 4181–4194 (2022)

    Google Scholar 

  41. Wazwaz, A.M.: Painlevé integrability and lump solutions for two extended (3+1)-and (2+1)-dimensional Kadomtsev-Petviashvili equations. Nonlinear Dyn. 111(4), 3623–3632 (2023)

    Google Scholar 

  42. Lü, X., Ma, W.X.: Study of lump dynamics based on a dimensionally reduced Hirota bilinear equation. Nonlinear Dyn. 85, 1217–1222 (2016)

    MathSciNet  MATH  Google Scholar 

  43. Wazwaz, A.M.: New (3+1)-dimensional Painlev integrable fifth-order equation with third-order temporal dispersion. Nonlinear Dyn. 106(1), 891–897 (2021)

    Google Scholar 

  44. Kumar, S., Dhiman, S.K., Baleanu, D., et al.: Lie symmetries, closed-form solutions, and various dynamical profiles of solitons for the variable coefficient (2+1)-dimensional KP equations. Symmetry 14(3), 597 (2022)

    Google Scholar 

  45. Liu, F.F., Zhou, C.C., Lü, X., et al.: Dynamic behaviors of optical solitons for Fokas-Lenells equation in optical fiber. Optik 224, 165237 (2020)

    Google Scholar 

  46. Huang, W.T., Liu, F.F., Lü, X., et al.: Dynamics and numerical simulation of optical pulses in the passively mode-locked Er-doped fiber laser. Commun. Nonlinear Sci. Numer. Simul. 114, 106658 (2022)

    MathSciNet  MATH  Google Scholar 

  47. Huang, W.T., Liu, F.F., Lü, X., et al.: Optical soliton and modulation instability in the high birefringence fiber. Nonlinear Dyn. 108(3), 2429–2445 (2022)

    Google Scholar 

  48. Lü, X., Chen, S.J.: Interaction solutions to nonlinear partial differential equations via Hirota bilinear forms: one-lump-multi-stripe and one-lump-multi-soliton types. Nonlinear Dyn. 103, 947–977 (2021)

    Google Scholar 

  49. Ali, K.K., Wazwaz, A.M., Osman, M.S.: Optical soliton solutions to the generalized nonautonomous nonlinear Schrödinger equations in optical fibers via the sine-Gordon expansion method. Optik 208, 164132 (2020)

    Google Scholar 

  50. Zhao, Y.W., Xia, J.W., Lü, X.: The variable separation solution, fractal and chaos in an extended coupled (2+1)-dimensional Burgers system. Nonlinear Dyn. 108, 4195 (2022)

    Google Scholar 

  51. Lü, X., Chen, S.J.: New general interaction solutions to the KPI equation via an optional decoupling condition approach. Commun. Nonlinear Sci. Numer. Simul. 103, 105939 (2021)

    MathSciNet  MATH  Google Scholar 

  52. Zhang, R.F., Li, M.C., Gan, J.Y., et al.: Novel trial functions and rogue waves of generalized breaking soliton equation via bilinear neural network method. Chaos Solitons Fractals 154, 111692 (2022)

    MathSciNet  MATH  Google Scholar 

  53. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambrigde, MA, USA (2016)

    MATH  Google Scholar 

  54. Lecun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521, 436–444 (2015)

    Google Scholar 

  55. Dockhorn, T.: A discussion on solving partial differential equations using neural networks. arXiv:1904.07200 (2019)

  56. Berg, J., Nyström, K.: Data-driven discovery of PDEs in complex datasets. J. Comput. Phys. 384, 239–252 (2019)

    MathSciNet  MATH  Google Scholar 

  57. Berg, J., Nyström, K.: Data-driven discovery of PDEs in complex datasets. J. Comput. Phys. 384, 239–252 (2019)

    MathSciNet  MATH  Google Scholar 

  58. Yu, B.: The deep Ritz method: a deep learning-based numerical algorithm for solving variational problems. Commun. Math. Stat. 6(1), 1–12 (2018)

    MathSciNet  MATH  Google Scholar 

  59. Raissi, M., Perdikaris, P., Karniadakis, G.E.: Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. J. Comput. Phys. 378, 686–707 (2019)

    MathSciNet  MATH  Google Scholar 

  60. Raissi, M., Karniadakis, G.E.: Hidden physics models: machine learning of nonlinear partial differential equations. J. Comput. Phys. 357, 125–141 (2018)

    MathSciNet  MATH  Google Scholar 

  61. Raissi, M., Perdikaris, P., Karniadakis, G.E.: Numerical Gaussian processes for time-dependent and nonlinear partial differential equations. SIAM J. Sci. Comput. 40(1), A172–A198 (2018)

    MathSciNet  MATH  Google Scholar 

  62. Raissi, M., Yazdani, A., Karniadakis, G.E.: Hidden fluid mechanics: learning velocity and pressure fields from flow visualizations. Science 367(6481), 1026–1030 (2020)

    MathSciNet  MATH  Google Scholar 

  63. Jagtap, A.D., Kharazmi, E., Karniadakis, G.E.: Conservative physics-informed neural networks on discrete domains for conservation laws: applications to forward and inverse problems. Comput. Methods Appl. Mech. Eng. 365, 113028 (2020)

    MathSciNet  MATH  Google Scholar 

  64. Rudy, H.S., Brunton, S.L., Proctor, J.L., Kutz, J.N.: Datadriven discovery of partial differential equations. Sci. Adv. 3, 2375–2548 (2016)

    Google Scholar 

  65. Kharazmi, E., Zhang, Z., Karniadakis, G.E.: Variational physics-informed neural networks for solving partial differential equations. arXiv preprint arXiv:1912.00873 (2019)

  66. Jagtap, A.D., Karniadakis, G.E.: Extended physics-informed neural networks (XPINNs): a generalized space-time domain decomposition based deep learning framework for nonlinear partial differential equations. Commun. Comput. Phys. 28(5), 2002–2041 (2020)

    MathSciNet  MATH  Google Scholar 

  67. Jin, X., Cai, S., Li, H., et al.: NSFnets (Navier-Stokes flow nets): physics-informed neural networks for the incompressible Navier-Stokes equations. J. Comput. Phys. 426, 109951 (2021)

    MathSciNet  MATH  Google Scholar 

  68. Fang, Y., Wu, G.Z., Wang, Y.Y., et al.: Data-driven femtosecond optical soliton excitations and parameters discovery of the high-order NLSE using the PINN. Nonlinear Dyn. 105(1), 603–616 (2021)

    Google Scholar 

  69. Jagtap, A. D., Mao, Z., Adams, N., et al.: Physics-informed neural networks for inverse problems in supersonic flows. arXiv preprint arXiv:2202.11821 (2022)

  70. Wu, G.Z., Fang, Y., Wang, Y.Y., et al.: Predicting the dynamic process and model parameters of the vector optical solitons in birefringent fibers via the modified PINN. Chaos Solitons Fractals 152, 111393 (2021)

    MathSciNet  MATH  Google Scholar 

  71. Coelho, A.G., Queiroz, A., Silva, M., et al.: Switching and enhanced bistability in an asymmetric nonlinear directional coupler with a metamaterial channel. Commun. Nonlinear Sci. Numer. Simul. 18(5), 258–1268 (2013)

    MathSciNet  Google Scholar 

  72. Hirota, R.: The Direct Method in Soliton Theory. Cambridge University Press, Cambridge (2004)

    MATH  Google Scholar 

  73. Jones, L.K.: Constructive approximations for neural networks by sigmoidal functions. Proc. IEEE 78, 1586–1589 (1990)

    Google Scholar 

  74. Carroll, S., Dickinson, B.: Construction of neural networks using the radon transform. IEEE Int. Conf. Neural Netw. 1, 607–611 (1989)

  75. Baydin, A.G., Pearlmutter, B.A., Radul, A.A., Siskind, J.M.: Automatic differentiation in machine learning: a survey. Comput. Sci. 18, 1–43 (2018)

  76. Zhang, R.F., Li, M.C., Cherraf, A., et al.: The interference wave and the bright and dark soliton for two integro-differential equation by using BNNM. Nonlinear Dyn. (2023). https://doi.org/10.1007/s11071-023-08257-5

    Article  Google Scholar 

  77. Zhang, R.F., Li, M.C.: Bilinear residual network method for solving the exactly explicit solutions of nonlinear evolution equation. Nonlinear Dyn. 108(1), 521–531 (2022)

Download references

Acknowledgements

The authors would like to express their thanks to the unknown referees for their careful reading and helpful comments.

Funding

This work is supported by the National Natural Science Foundation of China under Grant No. 12275017.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xing Lü.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest concerning the publication of this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, FF., Lü, X., Wang, JP. et al. Dynamical behavior and modulation instability of optical solitons in nonlinear directional couplers. Nonlinear Dyn 111, 10441–10458 (2023). https://doi.org/10.1007/s11071-023-08396-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-08396-9

Keywords

Navigation