Skip to main content

Advertisement

Log in

Hidden dynamics and control of a Filippov memristive hybrid neuron model

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The development of neurocomputing science highlights the necessity and new trend of establishing various feasible functional neuron models. A non-smooth feedback strategy is proposed by employing membrane potential as the threshold to describe the state-dependent effect of electromagnetic induction of neurons. Accordingly, a four-dimensional Filippov hybrid neuron model is established to reveal the firing mechanism of mammalian neocortical neurons. The local stability and bifurcation conditions of the subsystems are analyzed, and then, the bistable structures composed of quiescent state and periodic bursting patterns are identified. Intriguingly, the global dynamic behaviors of the subsystems are exactly consistent with its Hamilton energy, which enables precise localization of the coexisting attractors by analyzing the energy balance. Further, the sliding mode dynamics of the new neuron model, including sliding regions, various equilibrium points, and sliding bifurcations, are investigated based on differential inclusions theory. Importantly, the underlying mechanisms of sliding electrical activities, multistability, and hidden firing modes are studied via the fast–slow variable dissection method. Moreover, a Hamilton energy feedback control strategy is designed to effectively eliminate the hidden sliding electrical activities, which is far more effective than the traditional Washout controller. Finally, the modeling method and the obtained results provide a crucial theoretical basis and guarantee for optimizing the control of abnormal firing behaviors in the nervous system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Wang, C.N., Ma, J.: A review and guidance for pattern selection in spatiotemporal system. Int. J. Mod. Phys. B 32, 1830003 (2018)

    MathSciNet  MATH  Google Scholar 

  2. Ma, J., Yang, Z.Q., Yang, L.J., et al.: A physical view of computational neurodynamics. J. Zhejiang Univ. Sci. A 20(9), 639–659 (2019)

    Google Scholar 

  3. Lin, H.R., Wang, C.H., Deng, Q.L., et al.: Review on chaotic dynamics of memristive neuron and neural network. Nonlinear Dyn. 106, 959–973 (2021)

    Google Scholar 

  4. Ma, J., Tang, J.: A review for dynamics of collective behaviors of network of neurons. Sci. China Technol. Sci. 58(12), 2038–2045 (2015)

    Google Scholar 

  5. Ma, J., Zhang, G., Hayat, T., et al.: Model electrical activity of neuron under electric field. Nonlinear Dyn. 95, 1585–1598 (2019)

    Google Scholar 

  6. Lv, M., Wang, C.N., Ren, G.D., et al.: Model of electrical activity in a neuron under magnetic flow effect. Nonlinear Dyn. 85, 1479–1490 (2016)

    Google Scholar 

  7. Bao, B.C., Hu, A.H., Han, B., et al.: Three-dimensional memristive Hindmarsh–Rose neuron model with hidden coexisting asymmetric behaviors. Complexity 2018(4), 1–11 (2018)

    Google Scholar 

  8. Bao, H., Hu, A.H., Liu, W.B., et al.: Hidden bursting firings and bifurcation mechanisms in memristive neuron model with threshold electromagnetic induction. IEEE Trans. Neural. Netw. Learn Syst. 31(2), 502–511 (2019)

    Google Scholar 

  9. Bao, H., Liu, W.B., Chen, M.: Hidden extreme multistability and dimensionality reduction analysis for an improved non-autonomous memristive FitzHugh–Nagumo circuit. Nonlinear Dyn. 96, 1879–1894 (2019)

    MATH  Google Scholar 

  10. Zhang, S., Zheng, J.H., Wang, X.P., et al.: Multiscroll hidden attractor in memristive HR neuron model under electromagnetic radiation and its applications. Chaos 31(1), 011101 (2021)

    MATH  Google Scholar 

  11. An, X.L., Qiao, S.: The hidden, period-adding, mixed-mode oscillations and control in a HR neuron under electromagnetic induction. Chaos Solitons Fractals 143, 110587 (2021)

    MathSciNet  MATH  Google Scholar 

  12. Qiao, S., An, X.L.: Dynamic expression of HR neuron model under electric field. Int. J. Mod. Phys. B 35(2), 2150024 (2021)

    MathSciNet  MATH  Google Scholar 

  13. Qiao, S., An, X.L.: Dynamic response of the e-HR neuron model under electromagnetic induction. Pramana J. Phys. 95, 72 (2021)

    Google Scholar 

  14. Kafraj, M.S., Parastesh, F., Jafari, S.: Firing patterns of an improved Izhikevich neuron model under the effect of electromagnetic induction and noise. Chaos Solitons Fractals 137, 109782 (2020)

    MathSciNet  Google Scholar 

  15. Rajagopal, K., Nazarimehr, F., Karthikeyan, A., et al.: Dynamics of a neuron exposed to integer and fractiona order discontinuous external magnetic flux. Front. Inf. Technol. Electron. Eng. 20(4), 584–590 (2019)

    Google Scholar 

  16. Li, R.H., Ding, R.H.: A simple time-delay memristor and its application in 2D HR neuron model. Int. J. Mod. Phys. B 35(12), 2150166 (2021)

    MATH  Google Scholar 

  17. Wei, L.X., Zhang, J.G., An, X.L., et al.: Stability analysis and Hopf bifurcation based on time delay neurons under electromagnetic fields. Int. J. Mod. Phys. B 35(28), 2150291 (2021)

    MATH  Google Scholar 

  18. Wu, F.Q., Ma, J., Zhang, G.: A new neuron model under electromagnetic field. Appl. Math. Comput. 347, 590–599 (2019)

    MathSciNet  MATH  Google Scholar 

  19. Wouapi, K.M., Fotsin, B.H., Louodop, F.P., et al.: Various firing activities and finite-time synchronization of an improved Hindmarsh–Rose neuron model under electric field effect. Cogn. Neurodyn. 14, 375–397 (2020)

    Google Scholar 

  20. Etémé, A.S., Tabi, C.B., Mohamadou, A.: Firing and synchronization modes in neural network under magnetic stimulation. Commun. Nonlinear Sci. Numer. Simulat. 72, 432–440 (2019)

    MathSciNet  MATH  Google Scholar 

  21. Etémé, A.S., Tabi, C.B., Mohamadou, A., Kofané, T.C.: Long-range memory effects in a magnetized Hindmarsh–Rose neural network. Nonlinear Sci. Numer. Simulat. 84, 105208 (2020)

    MathSciNet  MATH  Google Scholar 

  22. Tabi, C.B., Etémé, A.S., Mohamadou, A., Kofané, T.C.: Unstable discrete modes in Hindmarsh–Rose neural networks under magnetic flow effect. Chaos Solitons Fractals 123, 116–123 (2019)

    MathSciNet  MATH  Google Scholar 

  23. Tabi, C.B., Etémé, A.S., Kofané, T.C.: Unstable cardiac multi-spiral waves in a FitzHugh–Nagumo soliton model under magnetic flow effect. Nonlinear Dyn. 100, 3799–3814 (2020)

    Google Scholar 

  24. Etémé, A.S., Tabi, C.B., Beyala Ateba, J.F., et al.: Chaos break and synchrony enrichment within Hindmarsh–Rose-type memristive neural models. Nonlinear Dyn. 105, 785–795 (2021)

    Google Scholar 

  25. Qiao, S., Gao, C.H.: Hidden dynamics, multistability and synchronization of a memristive Hindmarsh–Rose model. Int. J. Bifurcation Chaos 32(16), 2250244 (2022)

    Google Scholar 

  26. Chen, C.J., Chen, J.Q., Bao, H., et al.: Coexisting multi-stable patterns in memristor synapse-coupled Hopfield neural network with two neurons. Nonlinear Dyn. 95, 3385–3399 (2019)

    MATH  Google Scholar 

  27. Bao, H., Zhang, Y.Z., Liu, W.B., et al.: Memristor synapse-coupled memristive neuron network: synchronization transition and occurrence of chimera. Nonlinear Dyn. 100, 937–950 (2020)

    MATH  Google Scholar 

  28. Njitacke, Z.T., Awrejcewicz, J., Ramakrishnan, B., et al.: Hamilton energy computation and complex behavior of a small heterogeneous network of three neurons: circuit implementation. Nonlinear Dyn. 107, 2867–2886 (2022)

    Google Scholar 

  29. Foka, N.F.F., Ramakrishnan, B., Chamgoué, A.C., et al.: Neuronal circuit based on Josephson junction actuated by a photocurrent: dynamical analysis and microcontroller implementation. Eur. Phys. J. B 95, 91 (2022)

    Google Scholar 

  30. Xie, Y., Zhu, Z.G., Feng, Z.X., et al.: Control of firing mode in nonlinear neuron circuit driven by photocurrent. Acta. Phys. Sin. 70(21), 210502 (2021)

    Google Scholar 

  31. Liu, Y., Xu, W., Ma, J., et al.: A new photosensitive neuron model and its dynamics. Front. Inf. Technol. Electron. Eng. 21(9), 1387–1396 (2020)

    Google Scholar 

  32. Liu, Y., Xu, Y., Ma, J.: Synchronization and spatial patterns in a light-dependent neural network. Commun. Nonlinear Sci. Numer. Simul. 89, 105297 (2020)

    MathSciNet  MATH  Google Scholar 

  33. Xie, Y., Yao, Z., Hu, X.K., et al.: Enhance sensitivity to illumination and synchronization in light-dependent neurons. Chin. Phys. B 30(12), 120510 (2021)

    Google Scholar 

  34. Guo, Y.Y., Zhu, Z.G., Wang, C.N., et al.: Coupling synchronization between photoelectric neurons by using memristive synapse. Optik 218, 164993 (2020)

    Google Scholar 

  35. Guo, Y.Y., Wang, C.N., Yao, Z., et al.: Desynchronization of thermosensitive neurons by using energy pumping. Phys. A 602, 127644 (2022)

    MathSciNet  MATH  Google Scholar 

  36. Jabbari, M.B., Karamati, M.R.: The effects of temperature on the dynamics of the biological neural network. J. Biol. Phys. 48, 111–126 (2022)

    Google Scholar 

  37. Zhu, Z.G., Ren, G.D., Zhang, X.F., et al.: Effects of multiplicative-noise and coupling on synchronization in thermosensitive neural circuits. Chaos Solitons Fractals 151(9), 111203 (2021)

    MathSciNet  Google Scholar 

  38. Li, F., Liu, S., Li, X.L.: Pattern selection in thermosensitive neuron network induced by noise. Phys. A 589, 126627 (2022)

    MATH  Google Scholar 

  39. Xu, Y., Ma, J.: Pattern formation in a thermosensitive neural network. Commun. Nonlinear Sci. Numer. Simul. 111, 106426 (2022)

    MathSciNet  MATH  Google Scholar 

  40. Xu, Y., Guo, Y., Ren, G., et al.: Dynamics and stochastic resonance in a thermosensitive neuron. Appl. Math. Comput. 385, 125427 (2020)

    MathSciNet  MATH  Google Scholar 

  41. Zhang, X.F., Wang, C.N., Ma, J., et al.: Control and synchronization in nonlinear circuits by using a thermistor. Mod. Phys. Lett. B 34(25), 2050267 (2020)

    MathSciNet  Google Scholar 

  42. Zhang, X.F., Yao, Z., Guo, Y.Y., et al.: Target wave in the network coupled by thermistors. Chaos Solitons Fractals 142, 110455 (2021)

    MathSciNet  Google Scholar 

  43. Xu, Y., Liu, M.H., Zhu, Z.G., et al.: Dynamics and coherence resonance in a thermosensitive neuron driven by photocurrent. Chin. Phys. B 29(9), 098704 (2020)

    Google Scholar 

  44. Tagne, J.F., Edima, H.C., Njitacke, Z.T., et al.: Bifurcations analysis and experimental study of the dynamics of a thermosensitive neuron conducted simultaneously by photocurrent and thermistance. Eur. Phys. J. Spec. Top 231, 993–1004 (2022)

    Google Scholar 

  45. Guo, Y.T., Zhou, P., Yao, Z.: Biophysical mechanism of signal encoding in an auditory neuron. Nonlinear Dyn. 105, 3603–3614 (2021)

    Google Scholar 

  46. Zhou, P., Yao, Z., Ma, J., et al.: A piezoelectric sensing neuron and resonance synchronization between auditory neurons under stimulus. Chaos Solitons Fractals 145(9), 110751 (2021)

    MathSciNet  Google Scholar 

  47. Zhang, Y., Xu, Y., Yao, Z., et al.: A feasible neuron for estimating the magnetic field effect. Nonlinear Dyn. 102, 1849–1867 (2020)

    Google Scholar 

  48. Zhang, Y., Wang, C.N., Tang, J., et al.: Phase coupling synchronization of FHN neurons connected by a Josephson junction. Sci. China Technol. Sci. 63(11), 2328–2338 (2020)

    Google Scholar 

  49. Fossi, J.T., Deli, V., Edima, H.C., et al.: Phase synchronization between two thermo-photoelectric neurons coupled through a Josephson Junction. Eur. Phys. J. B 95, 66 (2022)

    Google Scholar 

  50. Song, X.L., Jin, W.Y., Ma, J.: Energy dependence on the electric activities of a neuron. Chin. Phys. B 24(12), 128710 (2015)

    Google Scholar 

  51. Wang, C.N., Liu, Z.L., Hobiny, A., et al.: Capturing and shunting energy in chaotic Chua circuit. Chaos Solitons Fractals 134, 109697 (2020)

    MathSciNet  MATH  Google Scholar 

  52. Faradja, P., Qi, G.Y.: Hamilton-based energy analysis for brushless DC motor chaotic system. Int. J. Bifurcation Chaos 30(8), 2050112 (2020)

    MATH  Google Scholar 

  53. Ma, J., Wu, F.Q., Jin, W.Y., et al.: Calculation of Hamilton energy and control of dynamical systems with different types of attractors. Chaos 27, 053108 (2017)

    MathSciNet  MATH  Google Scholar 

  54. Guo, S.L., Ma, J., Alsaedi, A.: Suppression of chaos via control of energy flow. Pramana J. Phys. 90, 39 (2018)

    Google Scholar 

  55. Wu, F.Q., Hayat, T., An, X.L., et al.: Can Hamilton energy feedback suppress the chameleon chaotic flow? Nonlinear Dyn. 94, 669–677 (2018)

    Google Scholar 

  56. Usha, K., Subha, P.A.: Energy feedback and synchronous dynamics of Hindmarsh–Rose neuron model with memristor. Chin. Phys. B 28(2), 020502 (2019)

    Google Scholar 

  57. Zhou, P., Hu, X.K., Zhu, Z.G., et al.: What is the most suitable Lyapunov function? Chaos Solitons Fractals 150, 111154 (2021)

    MathSciNet  MATH  Google Scholar 

  58. Wang, Y., Wang, C.N., Ren, G.D., et al.: Energy dependence on modes of electric activities of neuron driven by multi-channel signals. Nonlinear Dyn. 89, 1967–1987 (2017)

    Google Scholar 

  59. Yang, Y.M., Ma, J., Xu, Y., et al.: Energy dependence on discharge mode of Izhikevich neuron driven by external stimulus under electromagnetic induction. Cogn. Neurodyn. 15, 265–277 (2021)

    Google Scholar 

  60. Hodgkin, A.L., Huxley, A.F.: A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117, 500–544 (1952)

    Google Scholar 

  61. Wilson, H.R.: Simplified dynamics of human and mammalian neocortical neurons. J. Theor. Biol. 200, 375–388 (1999)

    Google Scholar 

  62. Gao, C.H., Qiao, S., An, X.L.: Global multistability and mechanisms of a memristive autapse-based Filippov Hindmash–Rose neuron model. Chaos Solitons Fractals 160, 112281 (2022)

    MathSciNet  MATH  Google Scholar 

  63. Li, Y.Y., Gu, H.G., Jia, Y.B., et al.: Fast–slow variable dissection with two slow variables related to calcium concentrations: a case study to bursting in a neural pacemaker model. Nonlinear Dyn. 107, 1223–1245 (2022)

    Google Scholar 

  64. Zhao, X., Kim, J.W., Robinson, P.A., Rennie, C.J.: Low dimensional model of bursting neurons. J. Comput. Neurosci. 36, 81–95 (2013)

    MathSciNet  Google Scholar 

  65. Liu, Y., Ma, J., Xu, Y., Jia, Y.: Electrical mode transition of hybrid neuronal model induced by external stimulus and electromagnetic induction. Int. J. Bifurcation Chaos 29, 1950156 (2019)

    MathSciNet  MATH  Google Scholar 

  66. Qiao, S., Gao, C.H., An, X.L., et al.: Electrical activities, excitability and multistability transitions of the hybrid neuronal model induced by electromagnetic induction and autapse. Mod. Phys. Lett. B 36(12), 2250006 (2022)

    MathSciNet  Google Scholar 

  67. Wu, F.Q., Gu, H.G., Li, Y.Y.: Inhibitory electromagnetic induction current induces enhancement instead of reduction of neural bursting activities. Commun. Nonlinear Sci. Numer. Simul. 79, 104924 (2019)

    MathSciNet  MATH  Google Scholar 

  68. Hamdallah, S.A.A., Arafa, A.A., Tang, S., et al.: Complex dynamics of a Filippov three-species food chain model. Int. J. Bifurcation Chaos 31(5), 2150074 (2021)

    MathSciNet  MATH  Google Scholar 

  69. Wang, Z.X., Zhang, C., Zhang, Z.D., et al.: Bursting oscillations with boundary homoclinic bifurcations in a Filippov-type Chua’s circuit. Pramana J. Phys. 94, 95 (2020)

    Google Scholar 

  70. Lyu, X.H., Zhu, X.F., Gao, Q.F., et al.: Two-parameter bifurcations of an impact system under different damping conditions. Chaos Solitons Fractals 138, 109972 (2020)

    MathSciNet  MATH  Google Scholar 

  71. Dhooge, A., Govaerts, W., Kuznetsov, Y.A.: Matcont. ACM Trans. Math. Softw. 29(2), 141–164 (2003)

    MATH  Google Scholar 

  72. Rao, X.B., Chu, Y.D., Zhang, J.G., et al.: Complex mode-locking oscillations and stern-brocot derivation tree in a CSTR reaction with impulsive perturbations. Chaos 30(11), 113117 (2020)

    MathSciNet  MATH  Google Scholar 

  73. Rao, X.B., Zhao, X.P., Gao, J.S., et al.: Self-organizations with fast–slow time scale in a memristor-based Shinriki’s circuit. Commun. Nonlinear Sci. Numer. Simul. 94(3), 105569 (2021)

    MathSciNet  MATH  Google Scholar 

  74. Zhang, J.G., Liang, X.L., Qiao, S., et al.: Stochastic stability and bifurcation of centrifugal governor system subject to color noise. Int. J. Bifurcation Chaos 32(5), 2250061 (2022)

    MathSciNet  MATH  Google Scholar 

  75. Polyanin, A.D., Chernoutsan, A.I.: A Concise Handbook of Mathematics, Physics, and Engineering Sciences. CRC Press, Boca Raton (2010)

    MATH  Google Scholar 

  76. Hassard, B.D., Wan, Y.H.: Bifurcation formulae derived from center manifold theory. J. Math. Anal. Appl. 63, 297–312 (1978)

    MathSciNet  MATH  Google Scholar 

  77. Wang, C.N., Wang, Y., Ma, J.: Calculation of Hamilton energy function of dynamic system by using Helmholtz theorem. Acta. Phys. Sin. 65(24), 240501 (2016)

    Google Scholar 

  78. Wolf, A., Swift, J.B., Swinney, H.L., et al.: Determining Lyapunov exponents from a time series. Phys. D 16(3), 285–317 (1985)

    MathSciNet  MATH  Google Scholar 

  79. Soriano, D.C., Fazanaro, F.I., Suyama, R., et al.: A method for Lyapunov spectrum estimation using cloned dynamics and its application to the discontinuously-excited Fitzhugh-Nagumo model. Nonlinear Dyn. 67(1), 413–424 (2012)

    MATH  Google Scholar 

  80. Filippov, A.F.: Differential Equations with Discontinuous Righthand Sides, Mathematics and Its Applications. Kluwer, Dordrecht (1988)

    Google Scholar 

  81. Utkin, V.I., Guldner, J., Shi, J.X.: Sliding Mode Control in Electro-mechanical Systems, 2nd edn. Routledge, Taylor Francis Group (2009)

    Google Scholar 

  82. Deng, J.W., Tang, S.Y., Kai, C.H.: Non-smooth ecological systems with a switching threshold depending on the pest density and its rate of change. Nonlinear Anal. 42, 101094 (2021)

    MathSciNet  MATH  Google Scholar 

  83. Cristiano, R., Carvalho, T., Tonon, D.J., et al.: Hopf and homoclinic bifurcations on the sliding vector field of switching systems in R3: a case study in power electronics. Physica D 347, 12–20 (2017)

    MathSciNet  MATH  Google Scholar 

  84. Kuznetsov, Y.A., Rinaldi, S., Gragnani, A.: One-parameter bifurcations in planar Filippov systems. Int. J. Bifurc. Chaos 13(8), 2157–2188 (2003)

    MathSciNet  MATH  Google Scholar 

  85. di Bernardo, M., Budd, C., Champneys, A., et al.: Piecewise-smooth Dynamical Systems: Theory and Applications. Springer, London (2008)

    MATH  Google Scholar 

  86. Ishaq Ahamed, A., Lakshmanan, M.: Sliding Bifurcations in the Memristive Murali–Lakshmanan–Chua circuit and the Memristive driven Chua oscillator. Int. J. Bifurc. Chaos 30(14), 2050214 (2020)

    MathSciNet  MATH  Google Scholar 

Download references

Funding

This work is supported by the National Natural Science Foundation of China (Nos. 11961060 and 11962012), and the Key Project of Natural Sciences Foundation of Gansu Province of China (No. 18JR3RA084) and the Graduate Research Grant Project of Northwest Normal University (No. 2022KYZZ-B046).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chenghua Gao.

Ethics declarations

Conflict of interest

The authors declare that there are no competing interests regarding the publication of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiao, S., Gao, C. & An, X. Hidden dynamics and control of a Filippov memristive hybrid neuron model. Nonlinear Dyn 111, 10529–10557 (2023). https://doi.org/10.1007/s11071-023-08393-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-08393-y

Keywords

Navigation