Skip to main content
Log in

Attitude tracking control of a quadrotor UAV subject to external disturbance with \(L_2\) performance

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Attitude stability plays an important role in the safe flight of quadrotor unmanned aerial vehicle (UAV). This paper aims to address the problem of attitude control of quadrotor UAV. The mathematical model of quadrotor system subject to external disturbance is first introduced. Then, a finite-time disturbance observer (FTDO) is developed to effectively compensate for external disturbance. It is proved that the disturbance observation error can be guaranteed to converge to zero in finite time. Based on the designed FTDO, a backstepping sliding mode control technique is proposed to stabilize three attitude angles of a quadrotor UAV, which can eliminate the tracking errors of attitude channel to zero asymptotically. Moreover, by constructing an auxiliary equation, the bound of transient attitude tracking error in terms of \(L_2\) norm is derived. Finally, the comparative simulations are carried out to illustrate the effectiveness of the proposed control scheme and several statistical indexes are given to quantitatively evaluate the performance in terms of observation error, tracking error and control signal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

The datasets generated and/or analyzed during this study are available from the corresponding author on reasonable request.

References

  1. Ghadiok, V., Goldin, J., Ren, W.: On the design and development of attitude stabilization, vision-based navigation, and aerial gripping for a low-cost quadrotor. Auton. Robot. 33, 41–68 (2012)

    Google Scholar 

  2. Zhao, L., Dai, L., Xia, Y., Li, P.: Attitude control for quadrotors subjected to wind disturbances via active disturbance rejection control and integral sliding mode control. Mech. Syst. Signal Process. 129, 531–545 (2019)

    Google Scholar 

  3. Lyu, X., Zhou, J., Gu, H., Li, Z., Shen, S., Zhang, F.: Disturbance observer based hovering control of quadrotor tail-sitter VTOL UAVs using H\(_\infty \) synthesis. IEEE Robot. Autom. Lett. 3(4), 2910–2917 (2018)

    Google Scholar 

  4. Eskandarpour, A., Sharf, I.: A constrained error-based MPC for path following of quadrotor with stability analysis. Nonlinear Dyn. 99, 899–918 (2020)

    MATH  Google Scholar 

  5. Dydek, Z.T., Annaswamy, A.M., Lavretsky, E.: Adaptive control of quadrotor UAVs: a design trade study with flight evaluations. IEEE Trans. Control Syst. Technol. 21(4), 1400–1406 (2013)

    Google Scholar 

  6. Koksal, N., Jalalmaab, M., Fidan, B.: Adaptive linear quadratic attitude tracking control of a quadrotor UAV based on IMU sensor data fusion. Sensors 19(46), 1–23 (2019)

    Google Scholar 

  7. Abro, G.E.M., Zulkifli, S.A.B.M., Asirvadam, V.S.: Dual-loop single dimension fuzzy-based sliding mode control design for robust tracking of an underactuated quadrotor craft. Asian J. Control 25(1), 144–169 (2022).

  8. Wang, X., Sun, S., Kampen, E., Chu, Q.: Quadrotor fault tolerant incremental sliding mode control driven by sliding mode disturbance observers. Aerosp. Sci. Technol. 87, 417–430 (2019)

    Google Scholar 

  9. Li, S., Wang, Y., Tan, J., Zheng, Y.: Adaptive RBFNNs/integral sliding mode control for a quadrotor aircraft. Neurocomputing 216, 126–134 (2016)

    Google Scholar 

  10. Li, B., Gong, W., Yang, Y., Xiao, B., Ran, D.: Appointed fixed time observer-based sliding mode control for a quadrotor UAV under external disturbances. IEEE Trans. Aerosp. Electron. Syst. 58(1), 290–303 (2022)

    Google Scholar 

  11. Mofid, O., Mobayen, S.: Adaptive sliding mode control for finite-time stability of quad-rotor UAVs with parametric uncertainties. ISA Trans. 72, 1–14 (2018)

    Google Scholar 

  12. Shao, X., Sun, G., Yao, W., Liu, J., Wu, L.: Adaptive sliding mode control for quadrotor UAVs with input saturation. IEEE/ASME Trans. Mechatron. 27(3), 1498–1509 (2022)

    Google Scholar 

  13. Tang, P., Zhang, F., Ye, J., Lin, D.: An integral TSMC-based adaptive fault-tolerant control for quadrotor with external disturbances and parametric uncertainties. Aerosp. Sci. Technol. 109, 106415 (2021)

    Google Scholar 

  14. Nekoukar, V., Dehkordi, N.M.: Robust path tracking of a quadrotor using adaptive fuzzy terminal sliding mode control. Control. Eng. Pract. 110, 104763 (2021)

    Google Scholar 

  15. Xiong, J., Zhang, G.: Global fast dynamic terminal sliding mode control for a quadrotor UAV. ISA Trans. 66, 233–240 (2017)

    Google Scholar 

  16. Wang, F., Gao, H., Wang, K., Zhao, C., Zong, Q., Hua, C.: Disturbance observer-based finite-time control design for a quadrotor UAV with external disturbance. IEEE Trans. Aerosp. Electron. Syst. 57(2), 834–847 (2021)

    Google Scholar 

  17. Liang, S., Meng, W., Lin, Z., Shao, K., Zheng, J., Li, H., Lu, R.: Adaptive attitude control of a quadrotor using fast nonsingular terminal sliding mode. IEEE Trans. Ind. Electron. 69(2), 1597–1607 (2022)

    Google Scholar 

  18. Das, A., Lewis, F., Subbarao, K.: Backstepping approach for controlling a quadrotor using Lagrange form dynamics. J. Intell. Robot. Syst. 56, 127–151 (2009)

    MATH  Google Scholar 

  19. Wang, R., Liu, J.: Trajectory tracking control of a 6-DOF quadrotor UAV with input saturation via backstepping. J. Franklin Inst. 355, 3288–3309 (2018)

    MathSciNet  MATH  Google Scholar 

  20. Ma, D., Xia, Y., Shen, G., Jia, Z., Li, T.: Flatness-based adaptive sliding mode tracking control for a quadrotor with disturbances. J. Franklin Inst. 355, 6300–6322 (2018)

    MathSciNet  MATH  Google Scholar 

  21. Derrouaoui, S.H., Bouzid, Y., Guiatni, M.: PSO based optimal gain scheduling backstepping flight controller design for a transformable quadrotor. J. Intell. Robot. Syst. 102(67), 1–25 (2021)

    Google Scholar 

  22. Li, C., Zhang, Y., Li, P.: Full control of a quadrotor using parameter-scheduled backstepping method: implementation and experimental tests. Nonlinear Dyn. 89, 1259–1278 (2017)

    Google Scholar 

  23. Cui, G., Yang, W., Yu, J., Li, Z., Tao, C.: Fixed-time prescribed performance adaptive trajectory tracking control for a QUAV. IEEE Trans. Circuits Syst. II Express Brief 69(2), 494–498 (2022)

    Google Scholar 

  24. Liu, K., Wang, R.: Antisaturation command filtered backstepping control-based disturbance rejection for a quadrotor UAV. IEEE Trans. Circuits Syst. II Express Brief 68(12), 3577–3581 (2021)

    Google Scholar 

  25. Shao, X., Liu, J., Wang, H.: Robust back-stepping output feedback trajectory tracking for quadrotors via extended state observer and sigmoid tracking differentiator. Mech. Syst. Signal Process. 104, 631–647 (2018)

    Google Scholar 

  26. Lu, H., Liu, C., Coombes, M., Guo, L., Chen, W.: Online optimisation-based backstepping control design with application to quadrotor. IET Control Theory Appl. 10(14), 1601–1611 (2016)

    MathSciNet  Google Scholar 

  27. Basri, M.A.M.: Trajectory tracking control of autonomous quadrotor helicopter using robust neural adaptive backstepping approach. J. Aerosp. Eng. 31(2), 04017091 (2018)

    MathSciNet  Google Scholar 

  28. Xie, W., Cabecinhas, D., Cunha, R., Silvestre, C.: Adaptive backstepping control of a quadcopter with uncertain vehicle mass, moment of inertia, and disturbances. IEEE Trans. Ind. Electron. 69(1), 549–559 (2022)

    Google Scholar 

  29. Ahmed, N., Raza, A., Shah, S., Khan, K.: Robust composite-disturbance observer based flight control of quadrotor attitude. J. Intell. Robot. Syst. 103(11), 1–18 (2021)

    Google Scholar 

  30. Jia, Z., Yu, J., Mei, Y., Chen, Y., Shen, Y., Ai, X.: Integral backstepping sliding mode control for quadrotor helicopter under external uncertain disturbances. Aerosp. Sci. Technol. 68, 299–307 (2017)

    Google Scholar 

  31. Wang, H., Li, N., Wang, Y., Su, B.: Backstepping sliding mode trajectory tracking via extended state observer for quadrotors with wind disturbance. Int. J. Control Autom. Syst. 19(10), 3273–3284 (2021)

    Google Scholar 

  32. Zhao, J., Ding, X., Jiang, B., Jiang, G., Xie, F.: A novel control strategy for quadrotors with variable mass and external disturbance. Int. J. Robust Nonlinear Control 31(17), 8605–8631 (2021)

    MathSciNet  Google Scholar 

  33. Eliker, K., Grouni, S., Tadjine, M., Zhang, W.: Quadcopter nonsingular finite-time adaptive robust saturated command-filtered control system under the presence of uncertainties and input saturation. Nonlinear Dyn. 104(2), 1363–1387 (2021)

    Google Scholar 

  34. Castillo, A., Sanz, R., Garcia, P., Qiu, W., Wang, H., Xu, C.: Disturbance observer-based quadrotor attitude tracking control for aggressive maneuvers. Control. Eng. Pract. 82, 14–23 (2019)

    Google Scholar 

  35. Xiao, B., Yin, S.: A new disturbance attenuation control scheme for quadrotor unmanned aerial vehicles. IEEE Trans. Ind. Inf. 13(6), 2922–2932 (2017)

  36. Bisheban, M., Lee, T.: Geometric adaptive control with neural networks for a quadrotor in wind fields. IEEE Trans. Control Syst. Technol. 29(4), 1533–1548 (2021)

    Google Scholar 

  37. Khodamipour, G., Khorashadizadeh, S., Farshad, M.: Observer-based adaptive control of robot manipulators using reinforcement learning and the Fourier series expansion. Trans. Inst. Meas. Control. 43(10), 2307–2320 (2021)

    Google Scholar 

  38. Asignacion, A., Suzuki, S., Noda, R., Nakata, T., Liu, H.: Frequency-based wind gust estimation for quadrotors using a nonlinear disturbance observer. IEEE Robot. Autom. Lett. 7(4), 9224–9231 (2022)

    Google Scholar 

  39. Tian, B., Cui, J., Lu, H., Zuo, Z., Zong, Q.: Adaptive finite-time attitude tracking of quadrotors with experiments and comparisons. IEEE Trans. Ind. Electron. 66(12), 9428–9438 (2019)

    Google Scholar 

  40. Slotine, J.E., Li, W.: Applied Nonlinear Control. China Machine Press, Beijing (2004)

    MATH  Google Scholar 

  41. Horn, R.A., Johnson, C.R.: Matrix Analysis. Cambridge University Press, Cambridge (2013)

    MATH  Google Scholar 

  42. Miklos, L., Vera, T.: Real Analysis: Foundations and Functions of One Variable. Springer, Berlin (2015)

    MATH  Google Scholar 

  43. Masjed-Jamei, M.: A functional generalization of the Cauchy–Schwarz inequality and some subclasses. Appl. Math. Lett. 22(9), 1335–1339 (2009)

    MathSciNet  MATH  Google Scholar 

  44. Nagesh, I., Edwards, C.: Adaptive finite-time attitude tracking of quadrotors with experiments and comparisons. Automatica 50(3), 984–988 (2014)

    MathSciNet  Google Scholar 

  45. Gonzalez, T., Moreno, J.A., Fridman, L.: Variable gain super-twisting sliding mode control. IEEE Trans. Autom. Control 57(8), 2100–2105 (2012)

    MathSciNet  MATH  Google Scholar 

  46. Wang, X., Shirinzadeh, B., Ang, M.H.J.: Nonlinear double-integral observer and application to quadrotor aircraft. IEEE Trans. Ind. Electron. 62(2), 1189–1200 (2015)

    Google Scholar 

  47. Izadbakhsh, A., Khorashadizadeh, S.: Polynomial-based robust adaptive impedance control of electrically driven robots. Robotica 39(7), 1181–1201 (2021)

    Google Scholar 

  48. Xu, Y., Shmaliy, Y.S., Shen, T., Chen, D., Sun, M., Zhang, Y.: INS/UWB-based quadrotor localization under colored measurement noise. IEEE Sens. J. 21(5), 6384–6392 (2021)

    Google Scholar 

Download references

Funding

This work is supported in part by the National Natural Science Foundation of China (under Grant Nos. 51939001, 61976033); the Liaoning Revitalization Talents Program (under Grant No. XLYC1908018).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tieshan Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, T., Li, T. Attitude tracking control of a quadrotor UAV subject to external disturbance with \(L_2\) performance. Nonlinear Dyn 111, 10183–10200 (2023). https://doi.org/10.1007/s11071-023-08374-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-08374-1

Keywords

Navigation