Skip to main content
Log in

Stability of fixed points in generalized fractional maps of the orders \(0< \alpha <1\)

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Caputo fractional (with power-law kernels) and fractional (delta) difference maps belong to a more widely defined class of generalized fractional maps, which are discrete convolutions with some power-law-like functions. The conditions of the asymptotic stability of the fixed points for maps of the orders \(0< \alpha <1\) that are derived in this paper are narrower than the conditions of stability for the discrete convolution equations in general and wider than the well-known conditions of stability for the fractional difference maps. The derived stability conditions for the fractional standard and logistic maps coincide with the results previously observed in numerical simulations. In nonlinear maps, one of the derived limits of the fixed-point stability coincides with the fixed-point—asymptotically period-two bifurcation point.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this published article.

References

  1. Tarasov, V.E., Zaslavsky, G.M.: Fractional equations of kicked systems and discrete maps. J. Phys. A 41, 435101 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  2. Edelman, M.: On the fractional Eulerian numbers and equivalence of maps with long term power-law memory (integral Volterra equations of the second kind) to Gr\(\ddot{u}\)nwald-Letnikov fractional difference (differential) equations. Chaos 25, 073103 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  3. Edelman, M.: Maps with power-law memory: direct introduction and Eulerian numbers, fractional maps, and fractional difference maps. In: Kochubei, A., Luchko, Yu. (eds.) Handbook of Fractional Calculus With Applications, Volume 2, Theory, pp. 47–64. De Gruyter, Berlin (2019)

    Google Scholar 

  4. Edelman, M.: Fractional maps as maps with power-law memory. In: Afraimovich, V., Luo, A.C.J., Fu, X. (eds.) Nonlinear Dynamics and Complexity; Series: Nonlinear Systems and Complexity, pp. 79–120. Springer, New York (2014)

    Chapter  Google Scholar 

  5. Edelman, M.: Universal Fractional Map and Cascade of Bifurcations Type Attractors. Chaos 23, 033127 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  6. Miller, K.S., Ross, B.: Fractional Difference Calculus. In: H. M. Srivastava and S. Owa, (eds.): Univalent Functions, Fractional Calculus, and Their Applications. 139–151, Ellis Howard, Chichester, (1989)

  7. Gray, H.L., Zhang, N.F.: On a new definition of the fractional difference. Math. Comput. 50, 513–529 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  8. Wu, G.-C., Baleanu, D., Zeng, S.-D.: Discrete chaos in fractional sine and standard maps. Phys. Lett. A 378, 484–487 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  9. Atici, F.M., Eloe, P.W.: Discrete fractional calculus with the nabla operator. Electron. J. Qual. Theory Differ. Equ. Spec. 2009, 1–12 (2009)

    MATH  Google Scholar 

  10. Atici, F.M., Eloe, P.W.: Initial value problems in discrete fractional calculus. Proc. Am. Math. Soc. 137, 981–989 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. Anastassiou, G.A.: Discrete fractional calculus and inequalities. http://arxiv.org/abs/0911.3370 (2009)

  12. Chen, F., Luo, X., Zhou, Y.: Existence Results for Nonlinear Fractional Difference Equation. Adv. Differ. Eq. 2011, 713201 (2011)

    MathSciNet  MATH  Google Scholar 

  13. Abdeljawad, T., Baleanu, D.: Fractional differences and integration by parts. J. Comp. Anal. App. 13, 574–582 (2011)

    MathSciNet  MATH  Google Scholar 

  14. Elaydi, S.: An Introduction to Difference Equations, 3rd edn. Undergraduate Texts in Mathematics, Springer, New York (2005)

    MATH  Google Scholar 

  15. Tarasov, V.E.: Differential equations with fractional derivative and universal map with memory. J. Phys. A: Math. Theor. 42, 465102 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Elaydi, S.: Stability of Volterra difference equations of convolution type. Proceedings of the Special Program at Nankai Institute of Mathematics (ed. Liao Shan-Tao et al.), World Scientific, pp. 66–73. Singapore, (1993)

  17. Elaydi, S., Murakami, S.: Asymptotic stability versus exponential stability in linear Volterra difference equations of convolution type. J. Difference Equ. Appl. 2, 401–410 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  18. Elaydi, S., Messina, E., Vecchio, A.: A note on the asymptotic stability of linear Volterra difference equations of convolution type. J. Difference Equ. Appl. 13, 1079–1084 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  19. Elaydi, S.: Stability and asymptoticity of Volterra difference equations: A progress report. J. Comp. Appl. Math. 228, 504–513 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. Oquendo, H.P., Barbosa, J.R.R., Pacheco, P.S.: On the stability of volterra difference equations of convolution type. Tema 18, 337–349 (2017)

    Article  MathSciNet  Google Scholar 

  21. Edelman, M., Tarasov, V.E.: Fractional standard map. Phys. Lett. A 374, 279–285 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  22. Edelman, M.: Universal fractional map and cascade of bifurcations type attractors. Chaos 23, 033127 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  23. Edelman, M.: Dynamics of nonlinear systems with power-law memory. In: Tarasov, V.E. (ed.) Handbook of Fractional Calculus with Applications, Volume 4, Applications in Physics, pp. 103–132. De Gruyter, Berlin (2019)

    Google Scholar 

  24. Abu-Saris, R., Al-Mdallal, Q.: On the asymptotic stability of linear system of fractional-order difference equations. Fract. Calc. Appl. Anal. 16, 613–629 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  25. Čermák, J., Győri, I., Nechvátal, L.: On explicit stability conditions for a linear fractional difference system. Fract. Calc. and Appl. Anal. 18, 651–672 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  26. Mozyrska, D., Wyrwas, M.: The z-transform method and delta type fractional difference operators. Discret. Dynam. Nat. Soc. 2015, 852734 (2015)

    MathSciNet  MATH  Google Scholar 

  27. Bhalekar, S., Gade, P.M., Joshi, D.: Stability and dynamics of complex order fractional difference equations. Chaos, Solitons Fractals 158, 112063 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  28. Edelman, M.: Fractional Standard Map: Riemann-Liouville vs. Caputo. Commun. Nonlin. Sci. Numer. Simul. 16, 4573–4580 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  29. Edelman, M. and Taieb, L.A.: New types of solutions of non-linear fractional differential equations. In: Almeida, A., Castro, L., Speck F.-O. (eds.) Advances in Harmonic Analysis and Operator Theory; Series: Operator Theory: Advances and Applications. 229, pp.139–155. Springer, Basel (2013)

  30. Edelman, M.: Caputo standard \(\alpha \)-family of maps: Fractional difference vs fractional. Chaos 24, 023137 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  31. Edelman, M.: Evolution of Systems with Power-Law Memory: Do We Have to Die? (Dedicated to the Memory of Valentin Afraimovich). In Skiadas C.H. and Skiadas C. (eds.) Demography of Population Health, Aging and Health Expenditures. 65–85, Springer, eBook (2020)

  32. Anh, P.T., Babiarz, A., Czornik, A., Niezabitowski, M., Siegmund, S.: Asymptotic properties of discrete linear fractional equations. Bullet. Polish Academy Sci. Tech. Sci. 67, 749–759 (2019)

    Google Scholar 

  33. Wu, G., Baleanu, D.: Jacobian matrix algorithm for Lyapunov exponents of the discrete fractional maps. Commun. Nonlinear Sci. Numer. Simul. 22, 95–100 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  34. Deshpande, A., Daftardar-Gejji, V.: Chaos in discrete fractional difference equations. Pramana 87, 1–10 (2016)

    Article  MATH  Google Scholar 

  35. Gasri, A., Khennaoui, A.-A., Ouannas, A., Grassi, G., Iatropoulos, A., Moysis, L., Volos, C.: A New Fractional-Order Map with Infinite Number of Equilibria and Its Encryption Application. Complexity 2022, 3592422 (2022)

    Article  Google Scholar 

  36. Joshi, D.D., Gade, P.M., Bhalekar, S.: Study of low-dimensional nonlinear fractional difference equations of complex order. Chaos 32, 113101 (2022)

  37. Edelman, M., Helman, A.B.: Asymptotic cycles in fractional maps of arbitrary positive orders. Fract. Calc. Appl. Anal. (2022). https://doi.org/10.1007/s13540-021-00008-w

    Article  MathSciNet  MATH  Google Scholar 

  38. Edelman, M.: Cycles in asymptotically stable and chaotic fractional maps. Nonlinear Dynam. 104, 2829–2841 (2021)

    Article  Google Scholar 

  39. Ferreira, R.A.C., Torres, D.F.M.: Fractional h-difference equations arising from the calculus of variations. Appl. Anal. Discrete Math. 5, 110–121 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  40. Edelman, M.: Fractional Maps and Fractional Attractors. Part II: Fractional Difference \(\alpha \)-Families of Maps. Discontinuity, Nonlinearity, and Complexity 4, 391–402 (2015)

    Article  MATH  Google Scholar 

  41. Wu, G.-C., Baleanu, D.: Discrete fractional logistic map and its chaos. Nonlin. Dyn. 75, 283–287 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  42. Petkeviciute-Gerlach, D., Timofejeva, I., Ragulskis, M.: Clocking convergence of the fractional difference logistic map. Nonlin. Dyn. 100, 3925–3935 (2020)

    Article  Google Scholar 

  43. Petkeviciute-Gerlach, D., Smidtaite, R., Ragulskis, M.: Intermittent bursting in the fractional difference logistic map of matrices. Int. J. of Bif. and Chaos 32, 2230002 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  44. Bai, Y.-R., Baleanu, D., Wu, G.-C.: A novel shuffling technique based on fractional chaotic maps. Optik 168, 553–562 (2018)

    Article  Google Scholar 

  45. Mendiola-Fuentes, J., Melchor-Aguilar, D.: A note on stability of fractional logistic maps. Appl. Math. Lett. 125, 107787 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  46. Edelman, M.: Comments on A note on stability of fractional logistic maps. Appl. Math. Lett. 129, 107892 (2022)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The author acknowledges support from Yeshiva University’s 2021–2022 Faculty Research Fund and expresses his gratitude to the administration of Courant Institute of Mathematical Sciences at NYU for the opportunity to perform computations at Courant and to Virginia Donnelly for technical help.

Funding

This research was supported by Yeshiva University’s 2021–2022 Faculty Research Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark Edelman.

Ethics declarations

Conflict of interest

The author declares that he has no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Edelman, M. Stability of fixed points in generalized fractional maps of the orders \(0< \alpha <1\). Nonlinear Dyn 111, 10247–10254 (2023). https://doi.org/10.1007/s11071-023-08359-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-08359-0

Keywords

Mathematics Subject Classification

Navigation