Skip to main content
Log in

Robust finite-time fault-tolerant control for vehicle height and posture regulation with air suspension system subject to actuator faults, uncertainties and external disturbance

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, a robust control algorithm is designed to achieve a finite-time vehicle height and posture control through electronically controlled air suspension (ECAS) system subject to actuator faults, uncertainties under non-stationary condition. To achieve simultaneous position control of four corners of vehicle, synchronization errors between corners are taken to form a synchronization control strategy. Furthermore, to improve the system convergence speed and robustness, finite-time stability constrain is applied and \({{H}_{\infty }}\) index is designed strategically in order to develop a novel robust finite-time controller. Since the solenoid valves in the ECAS system may degrade with the frequent switching, actuator fault and uncertain parameters are considered in this study to design the proposed fault-tolerant control methodology. Meanwhile, road disturbance is applied to the vehicle with the ECAS system to provide a non-stationary condition. Several software-in-the-loop tests and hardware-in-the-loop test are conducted to illustrate the effectiveness of the proposed controller.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Li, G., Ruan, Z., Gu, R., Hu, G.: Fuzzy sliding mode control of vehicle magnetorheological semi-active air suspension. Appl. Sci. 11(22), 10925 (2021)

    Article  Google Scholar 

  2. Zhao, J., Wang, X., Wong, P.K., Xie, Z., Jia, J., Li, W.: Multi-objective frequency domain-constrained static output feedback control for delayed active suspension systems with wheelbase preview information. Nonlinear Dyn. 103, 1757–1774 (2021)

    Article  Google Scholar 

  3. Wang, H., Wong, P.K., Zhao, J., Yang, Z., Yang, Z.X.: Observer-based robust gain-scheduled control for semi-active air suspension systems subject to uncertainties and external disturbance. Mech. Syst. Signal Process. 173, 109045 (2022)

    Article  Google Scholar 

  4. Zhao, Z., Taghavifar, H., Du, H., Qin, Y., Dong, M., Gu, L.: In-wheel motor vibration control for distributed-driven electric vehicles: a review. IEEE Trans. Transp. Electrif. 7(4), 2864–2880 (2021)

    Article  Google Scholar 

  5. Ha, D.V., Tan, V.V., Niem, V.T., Sename, O.: Evaluation of dynamic load reduction for a tractor semi-trailer using the air suspension system at all axles of the semi-trailer. Acuators 11(1), 12 (2022)

    Article  Google Scholar 

  6. Hu, Q., Lu, W., Jiang, J.: Dynamic modeling and adjustable damping layered control of air suspension hybrid system. Aust. J. Mech. Eng. 20(1), 1–13 (2022)

    Article  Google Scholar 

  7. Kim, H., Lee, H.: Height and leveling control of automotive air suspension system using sliding mode approach. IEEE Trans. Veh. Technol. 60(5), 2027–2041 (2011)

    Article  Google Scholar 

  8. Zhao, R., Xie, W., Wong, P.K., Cabecinhas, D., Silvestre, C.: Robust ride height control for active air suspension systems with multiple unmodeled dynamics and parametric uncertainties. IEEE Access 7, 59185–59199 (2019)

    Article  Google Scholar 

  9. Ma, X., Wong, P.K., Zhao, J., Zhong, J., Ying, H., Xu, X.: Design and testing of a nonlinear model predictive controller for ride height control of automotive semi-active air suspension systems. IEEE Access 6, 63777–63793 (2018)

    Article  Google Scholar 

  10. Gao, Z., Chen, S., Zhao, Y., Nan, J.: Height adjustment of vehicles based on a static equilibrium position state observation algorithm. Energies 11(2), 455 (2018)

    Article  Google Scholar 

  11. Sun, X., Cai, Y., Yuan, C., Wang, S., Chen, L.: Fuzzy sliding mode control for the vehicle height and leveling adjustment system of an electronic air suspension. Chin. J. Mech. Eng. 31(25) (2018)

  12. Li, Z., Wang, Y., Du, H., Hu, Z.: Modelling and analysis of full-vehicle hydro-pneumatic suspension system considering real-gas polytropic process. Mech. Syst. Signal Process. 165, 108406 (2021)

    Article  Google Scholar 

  13. Zhao, R., Xie, W., Zhao, J., Wong, P.K., Silvestre, C.: Nonlinear ride height control of active air suspension system with output constraints and time-varying disturbances. Sensors 21(4), 1539 (2021)

    Article  Google Scholar 

  14. Zhu, H., Yang, J., Zhang, Y.: Dual-chamber pneumatically interconnected suspension: modeling and theoretical analysis. Mech. Syst. Signal Process. 147, 107125 (2021)

    Article  Google Scholar 

  15. Shalabi, M.E., Elbab, Fath, A.M.R., El-Hussieny, H., Abouelsoud, A.A.: Neuro-fuzzy volume control for quarter car air-spring suspension system. IEEE Access 9, 77611–77623 (2021)

  16. Sun, X., Cai, Y., Chen, L., Liu, Y., Wang, S.: Vehicle height and posture control of the electronic air suspension system using the hybrid system approach. Veh. Syst. Dyn. 54(3), 328–352 (2016)

    Article  Google Scholar 

  17. Hu, Q., Lu, W., Jiang, J.: Design of a vehicle height and body posture adjustment hybrid automaton of electronically controlled air suspension. Int. J. Adapt. Control Signal Process. 35(9), 1879–1897 (2021)

    Article  Google Scholar 

  18. Yin, C., Zhao, D., Zhang, J., Wang, S., Xu, X., Sun, X., Shi, D.: Body height robust control of automotive air suspension system using finite-time approach. Asian J. Control 24(2), 859–871 (2022)

    Article  Google Scholar 

  19. Zhang, Z., Zhang, J., Yin, H., Zhang, B., Jing, X.: Bio-inspired structure reference model oriented robust full vehicle active suspension system control via constraint-following. Mech. Syst. Signal Process. 179, 109368 (2022)

    Article  Google Scholar 

  20. Du, M., Zhao, D., Yang, M., Chen, H.: Nonlinear extended state observer-based output feedback stabilization control for uncertain nonlinear half-car active suspension systems. Nonlinear Dyn. 100, 2483–2503 (2020)

    Article  Google Scholar 

  21. Zhang, Z., Qin, A., Zhang, J., Zhang, B., Fan, Q., Zhang, N.: Fuzzy sampled-data \({H}{\infty } \) sliding-mode control for active hysteretic suspension of commercial vehicles with unknown actuator-disturbance. Control Eng. Pract. 177, 104940 (2021)

    Article  Google Scholar 

  22. Sun, D.: Position synchronization of multiple motion axes with adaptive coupling control. Automatica 39(6), 997–1005 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  23. Zhao, R., Xie, W., Wong, P.K., Cabecinhas, D., Silvestre, C.: Adaptive vehicle posture and height synchronization control of active air suspension systems with multiple uncertainties. Nonlinear Dyn. 99, 2109–2127 (2020)

    Article  Google Scholar 

  24. Xu, X., Wang, W., Zou, N., Chen, L., Cui, X.: A comparative study of sensor fault diagnosis methods based on observer for ecas system. Mech. Syst. Signal Process. 87(Part B), 169–183 (2017)

    Article  Google Scholar 

  25. Kim, H., Lee, H.: Fault-tolerant control algorithm for a four-corner closed-loop air suspension system. IEEE Trans. Ind. Electron. 58(10), 4866–4879 (2011)

    Article  Google Scholar 

  26. Chen, Y., Hou, Y., Peterson, A., Ahmadian, M.: Failure mode and effects analysis of dual levelling valve air spring suspensions on truck dynamics. Veh. Syst. Dyn. 57(4), 617–635 (2019)

    Article  Google Scholar 

  27. Mei, Y., Wang, J., Park, J.H., Shi, K., Shen, H.: Adaptive fixed-time control for nonlinear systems against time-varying actuator faults. Nonlinear Dyn. 107, 3629–3640 (2022)

    Article  Google Scholar 

  28. Xie, W., Guo, M., Xu, B., Wang, X.: Fault tolerant robust control with transients for over-actuated nonlinear systems. Nonlinear Dyn. 104, 2433–2450 (2021)

    Article  Google Scholar 

  29. Wang, R., Jing, H., Karimi, H.R., Chen, N.: Robust fault-tolerant \({H}_{ {\infty }}\) control of active suspension systems with finite-frequency constraint. Mech. Syst. Signal Process. 62–63, 341–355 (2015)

    Article  Google Scholar 

  30. Van, M., Mavrovouniotis, M., Ge, S.S.: An adaptive backstepping nonsingular fast terminal sliding mode control for robust fault tolerant control of robot manipulators. IEEE Trans. Syst. Man Cybern. Syst. 49(7), 1448–1458 (2019)

    Article  Google Scholar 

  31. Van, M., Ge, S.S., Ren, H.: Finite time fault tolerant control for robot manipulators using time delay estimation and continuous nonsingular fast terminal sliding mode control. IEEE Trans. Cybern. 47(7), 1681–1693 (2017)

    Article  Google Scholar 

  32. Liu, L., Ding, S.: A unified control approach to finite-time stabilization of sosm dynamics subject to an output constraint. Appl. Math. Comput. 394, 125752 (2021)

    MathSciNet  MATH  Google Scholar 

  33. Pan, H., Sun, W.: Nonlinear output feedback finite-fime control for vehicle active suspension systems. IEEE Trans. Ind. Inform. 15(4), 2073–2082 (2019)

    Article  Google Scholar 

  34. Pan, H., Jing, X., Sun, W.: Robust finite-time tracking control for nonlinear suspension systems via disturbance compensation. Mech. Syst. Signal Process. 88, 49–61 (2017)

    Article  Google Scholar 

  35. Na, J., Huang, Y., Wu, X., Su, S., Li, G.: Adaptive finite-time fuzzy control of nonlinear active suspension systems with input delay. IEEE Trans. Cybern. 50(6), 2639–2650 (2020)

    Article  Google Scholar 

  36. Liu, H., Tian, X., Wang, G., Zhang, T.: Finite-time \({H}_{ {\infty }}\) control for high-precision tracking in robotic manipulators using backstepping control. IEEE Trans. Ind. Electron. 63(9), 5501–5513 (2016)

    Article  Google Scholar 

  37. Qin, Y., Zhao, Z., Wang, Z., Li, G.: Study of longitudinal-vertical dynamics for in-wheel motor-driven electric vehicles. Automot. Innov. 4, 227–237 (2021)

    Article  Google Scholar 

  38. Lee, T.H., Lim, C.P., Nahavandi, S., Roberts, R.G.: Observer-based \({H}_{ {\infty }}\) fault-tolerant control for linear systems with sensor and actuator faults. IEEE Syst. J. 13(2), 1981–1990 (2019)

    Article  Google Scholar 

  39. Yu, S., Yu, X., Shirinzadeh, B., Man, Z.: Continuous finite-time control for robotic manipulators with terminal sliding mode. Automatica 41(11), 1957–1964 (2005)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Funding

This research is supported by National Natural Science Foundation of China (Grant No. 52175127), Guangdong Basic and Applied Basic Research Foundation (Grant No. 2019A1515011602) and University of Macau (Grant No. MYRG2020-00045-FST).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hang Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wong, P.K., Wang, H. & Zhao, J. Robust finite-time fault-tolerant control for vehicle height and posture regulation with air suspension system subject to actuator faults, uncertainties and external disturbance. Nonlinear Dyn 111, 10113–10130 (2023). https://doi.org/10.1007/s11071-023-08355-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-08355-4

Keywords

Navigation