Skip to main content
Log in

Coexistence and ergodicity in a variant Nosé-Hoover oscillator and its FPGA implementation

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

As a classical volume-conservative system, the Nosé-Hoover oscillator can generate conservative chaos and nested invariant tori. In this paper, a new 3D system is derived from the Nosé-Hoover oscillator in which the coexisting phenomenon of conservative flow and dissipative attractor is discovered. We first numerically analyze the equilibrium points and their stabilities, and study the fold-Hopf bifurcation at the critical point. Then, the dynamic behaviors of the system are studied, besides the coexisting phenomenon, the system also has transient chaos. More interestingly, we find that the increase of parameter has a significant effect on enhancing the ergodicity of the system, which is also proved by the cross section with no “holes”. Furthermore, we design a pseudo-random number generator based on the new system. Numerical results show that this PRNG can generate pseudo-random sequences with high randomness and is suitable for image encryption. Finally, we implement the system using FPGA technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Data availability

Some or all data, models, or code generated or used during the study are available from the corresponding author by request.

References

  1. Lorenz, E.N.: Deterministic nonperiodic flow. J. Atmos. Sci. 20(2), 130 (1963)

    MathSciNet  MATH  Google Scholar 

  2. Chen, G., Ueta, T.: Yet another chaotic attractor. Int. J. Bifur. Chaos 9(07), 1465 (1999)

    MathSciNet  MATH  Google Scholar 

  3. Shuichi, N.: Constant temperature molecular dynamics methods. Progr. Theor. Phys. Suppl. 103, 1 (1991)

    MathSciNet  Google Scholar 

  4. Nosé, S.: A unified formulation of the constant temperature molecular dynamics methods. J. Chem. Phys. 81(1), 511 (1984)

    Google Scholar 

  5. Hoover, W.G.: Canonical dynamics: equilibrium phase-space distributions. Phys. Rev. A 31(3), 1695 (1985)

    Google Scholar 

  6. Sprott, J.C.: Some simple chaotic flows. Phys. Rev. E 50(2), R647 (1994)

    MathSciNet  Google Scholar 

  7. Hoover, W.G.: Remark on “aSome simple chaotic flows’’. Phys. Rev. E 51(1), 759 (1995)

    Google Scholar 

  8. Messias, M., Reinol, A.C.: On the formation of hidden chaotic attractors and nested invariant tori in the Sprott A system. Nonlinear Dyn. 88(2), 807 (2017)

    MATH  Google Scholar 

  9. Messias, M., Reinol, A.C.: On the existence of periodic orbits and KAM tori in the Sprott A system: a special case of the Nosé-Hoover oscillator. Nonlinear Dyn. 92(3), 1287 (2018)

    MATH  Google Scholar 

  10. Jia, H., Shi, W., Wang, L., Qi, G.: Energy analysis of Sprott-A system and generation of a new Hamiltonian conservative chaotic system with coexisting hidden attractors. Chaos, Solitons Fract. 133, 109635 (2020)

    MathSciNet  MATH  Google Scholar 

  11. Sprott, J.: Variants of the Nosé-Hoover oscillator. Eur. Phys. J. Special Topics 229(6), 963 (2020)

    Google Scholar 

  12. Wang, L., Yang, X.S.: The coexistence of invariant tori and topological horseshoe in a generalized Nosé-Hoover oscillator. Int. J. Bifurc. Chaos 27(07), 1750111 (2017)

    MATH  Google Scholar 

  13. Cang, S., Li, Y., Xue, W., Wang, Z., Chen, Z.: Conservative chaos and invariant tori in the modified Sprott A system. Nonlinear Dyn. 99(2), 1699 (2020)

    MATH  Google Scholar 

  14. Kuznetsov, Y.A.: Elements of applied bifurcation theory. Springer Science & Business Media, NY (2013)

    Google Scholar 

  15. Bosi, S., Desmarchelier, D.: Local bifurcations of three and four-dimensional systems: a tractable characterization with economic applications. Math. Soc. Sci. 97, 38 (2019)

    MathSciNet  MATH  Google Scholar 

  16. Martini, D., Innocenti, G., Tesi, A.: Detection of subcritical Hopf and fold bifurcations in an aeroelastic system via the describing function method. Chaos, Solitons Fractals 157, 111892 (2022)

    MathSciNet  MATH  Google Scholar 

  17. Bisquert, J.: Hopf bifurcations in electrochemical, neuronal, and semiconductor systems analysis by impedance spectroscopy. Appl. Phys. Rev. 9(1), 011318 (2022)

    Google Scholar 

  18. Chan-López, E., Castellanos, V.: Biological control in a simple ecological model via subcritical Hopf and Bogdanov-Takens bifurcations. Chaos, Solitons Fractals 157, 111921 (2022)

    MathSciNet  MATH  Google Scholar 

  19. Chen, M., Wu, R., Liu, B., Chen, L.: Hopf-Hopf bifurcation in the delayed nutrient-microorganism model. Appl. Math. Modell. 86, 460 (2020)

    MathSciNet  MATH  Google Scholar 

  20. Zhen, B., Xu, J.: Fold-Hopf bifurcation analysis for a coupled Fitzhugh-Nagumo neural system with time delay. Int. J. Bifurc. Chaos 20(12), 3919 (2010)

    MathSciNet  MATH  Google Scholar 

  21. Hussein, N.H., Amen, A.I.: Zero-Hopf bifurcation in the generalized stretch-twist-fold flow. Sultan Qaboos Univ. J. Sci. 24(2), 122 (2019)

    Google Scholar 

  22. Li, Y., Chen, Z., Yuan, M., Cang, S.: The transition from conservative to dissipative flows in class-B laser model with fold-Hopf bifurcation and coexisting attractors, Chinese Physics B (2021)

  23. Lai, Y.C., Tél, T.: Transient chaos: complex dynamics on finite time scales. Springer Science & Business Media, NY (2011)

    MATH  Google Scholar 

  24. Scott, S.K., Peng, B., Tomlin, A.S., Showalter, K.: Transient chaos in a closed chemical system. J. Chem. Phys. 94(2), 1134 (1991)

    Google Scholar 

  25. Yang, X.S., Yuan, Q.: Chaos and transient chaos in simple Hopfield neural networks. Neurocomputing 69(1–3), 232 (2005)

    Google Scholar 

  26. Yousefpour, A., Jahanshahi, H., Munoz-Pacheco, J.M., Bekiros, S., Wei, Z.: A fractional-order hyper-chaotic economic system with transient chaos. Chaos, Solitons Fractals 130, 109400 (2020)

    MathSciNet  MATH  Google Scholar 

  27. Ullah, A., Jamal, S.S., Shah, T.: A novel scheme for image encryption using substitution box and chaotic system. Nonlinear Dyn. 91(1), 359 (2018)

    MathSciNet  Google Scholar 

  28. Özkaynak, F.: Brief review on application of nonlinear dynamics in image encryption. Nonlinear Dyn. 92(2), 305 (2018)

    Google Scholar 

  29. Fraser, A.M., Swinney, H.L.: Independent coordinates for strange attractors from mutual information. Phys. Rev. A 33(2), 1134 (1986)

    MathSciNet  MATH  Google Scholar 

  30. Cheng, G., Wang, C., Chen, H.: A novel color image encryption algorithm based on hyperchaotic system and permutation-diffusion architecture. Int. J. Bifurc. Chaos 29(09), 1950115 (2019)

    MathSciNet  MATH  Google Scholar 

  31. Yin, Q., Wang, C.: A new chaotic image encryption scheme using breadth-first search and dynamic diffusion. Int. J. Bifurc. Chaos 28(04), 1850047 (2018)

    MathSciNet  MATH  Google Scholar 

  32. Qi, G., Hu, J.: Modelling of both energy and volume conservative chaotic systems and their mechanism analyses. Commun. Nonlinear Sci. Numer. Simul. 84, 105171 (2020)

    MathSciNet  MATH  Google Scholar 

  33. Cang, S., Kang, Z., Wang, Z.: Pseudo-random number generator based on a generalized conservative Sprott-A system. Nonlinear Dyn. 104(1), 827 (2021)

    Google Scholar 

  34. Zhang, Z., Huang, L.: A new 5D Hamiltonian conservative hyperchaotic system with four center type equilibrium points, wide range and coexisting hyperchaotic orbits. Nonlinear Dyn. 1, 16 (2022)

    Google Scholar 

  35. Legoll, F., Luskin, M., Moeckel, R.: Non-ergodicity of Nosé-Hoover dynamics. Nonlinearity 22(7), 1673 (2009)

    MathSciNet  MATH  Google Scholar 

  36. Thamilmaran, K., Sabarathinam, S.: Transient chaos in a globally coupled system of nearly conservative Hamiltonian Duffing oscillators, Chaos, Solitons and Fractals: Applications in Science and Engineering: An Interdisciplinary. J. Nonlinear Sci. 73, 129 (2015)

    MATH  Google Scholar 

  37. Cang, S., Li, Y., Kang, Z., Wang, Z.: A generic method for constructing n-fold covers of 3D conservative chaotic systems. Chaos: Interdiscipl. J. Nonlinear Sci. 30(3), 033103 (2020)

    MathSciNet  MATH  Google Scholar 

  38. Bryuno, A.: The normal form of a Hamiltonian system. Russian Math. Surv. 43(1), 25 (1988)

    MathSciNet  MATH  Google Scholar 

  39. Faradja, P., Qi, G.: Hamiltonian-based energy analysis for brushless DC motor chaotic system. Int. J. Bifurc. Chaos 30(08), 2050112 (2020)

    MathSciNet  MATH  Google Scholar 

  40. Li, Y., Chen, Z., Wang, Z., Cang, S.: An effective approach for constructing a class of 4D multicluster conservative chaotic systems without external excitation. Int. J. Bifurc. Chaos 31(13), 2150198 (2021)

    MathSciNet  MATH  Google Scholar 

  41. Martyna, G.J., Klein, M.L., Tuckerman, M.: Nosé-Hoover chains: the canonical ensemble via continuous dynamics. J. Chem. Phys. 97(4), 2635 (1992)

    Google Scholar 

  42. Hu, X., Liu, C., Liu, L., Ni, J., Li, S.: Multi-scroll hidden attractors in improved Sprott A system. Nonlinear Dyn. 86(3), 1725 (2016)

    Google Scholar 

  43. Llibre, J., Messias, M., Reinol, A.C.: Global dynamics and bifurcation of periodic orbits in a modified Nosé-Hoover oscillator. J. Dyn. Control Syst. 27(3), 491 (2021)

    MathSciNet  MATH  Google Scholar 

  44. Llibre, J., Martínez, Y.P., Valls, C.: Limit cycles bifurcating of Kolmogorov systems in R2 and in R3. Commun. Nonlinear Sci. Numer. Simul. 91, 105401 (2020)

    MathSciNet  MATH  Google Scholar 

  45. Tigan, G., Llibre, J., Ciurdariu, L.: Degenerate fold-Hopf bifurcations in a Rössler-type system,. Int. J. Bifurc. Chaos 27(5), 1750068 (2017)

    MATH  Google Scholar 

  46. Grebogi, C., Ott, E., Yorke, J.A.: Fractal basin boundaries, long-lived chaotic transients, and unstable-unstable pair bifurcation. Phys. Rev. Lett. 50(13), 935 (1983)

    MathSciNet  Google Scholar 

  47. Tapias, D., Bravetti, A., Sanders, D.P.: Ergodicity of one-dimensional systems coupled to the logistic thermostat. Comput. Methods Sci. Technol. 23, 1 (2016)

    Google Scholar 

  48. Cang, S., Kang, Z., Wang, Z.: Pseudo-random number generator based on a generalized conservative Sprott-A system. Nonlinear Dyn. 104(1), 1 (2021)

    Google Scholar 

  49. Wang, N., Zhang, G., Bao, H.: Infinitely many coexisting conservative flows in a 4D conservative system inspired by LC circuit. Nonlinear Dyn. 99(2), 1 (2020)

    Google Scholar 

  50. Wang, N., Li, C., Bao, H., Chen, M., Bao, B.: Generating multi-scroll Chua’s attractors via simplified piecewise-linear Chua’s diode. Circuits Syst. I: Regular Papers, IEEE Trans. 66(12), 4767 (2019)

    Google Scholar 

  51. Dong, E., Yuan, M., Du, S., Chen, Z.: A new class of Hamiltonian conservative chaotic systems with multistability and design of pseudo-random number generator. Appl. Math. Modell. 73, 40 (2019)

    MathSciNet  MATH  Google Scholar 

  52. Qi, G.: Modelings and mechanism analysis underlying both the 4D Euler equations and Hamiltonian conservative chaotic systems. Nonlinear Dyn. 95(3), 2063 (2019)

    MATH  Google Scholar 

  53. Li, Y., Cang, S., Kang, Z., Wang, Z.: A new conservative system with isolated invariant tori and six-cluster chaotic flows. Eur. Phys. J. Special Topics 229, 1335 (2020)

    Google Scholar 

  54. Qi, G., Hu, J., Wang, Z.: Modeling of a Hamiltonian conservative chaotic system and its mechanism routes from periodic to quasiperiodic, chaos and strong chaos. Appl. Math. Modell. 78, 350 (2020)

    MathSciNet  MATH  Google Scholar 

  55. Vaidyanathan, S., Pakiriswamy, S.: A 3-D novel conservative chaotic system and its generalized projective synchronization via adaptive control. J. Eng. Sci. Technol. Rev. 8, 2 (2015)

    Google Scholar 

  56. Singh, J.P., Roy, B.K.: Five new 4-D autonomous conservative chaotic systems with various type of non-hyperbolic and lines of equilibria. Chaos, Solitons Fractals 114, 81 (2018)

    MathSciNet  MATH  Google Scholar 

  57. Dong, C.: Asymmetric color image encryption scheme using discrete-time map and hash value. Optik 126(20), 2571 (2015)

    Google Scholar 

Download references

Acknowledgements

This work is partly supported by the National Natural Science Foundation of China (Grant Nos. 61973175 and 61903274), the TianJin Natural Science Foundation (Grant Nos. 20JCYBJC01060 and 20JCQNJC01450), and the Tianjin Research Innovation Project for Postgraduate Students (Grant No.2021YJSB034).

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yue Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Yuan, M., Chen, Z. et al. Coexistence and ergodicity in a variant Nosé-Hoover oscillator and its FPGA implementation. Nonlinear Dyn 111, 10583–10599 (2023). https://doi.org/10.1007/s11071-023-08347-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-08347-4

Keywords

Navigation