Skip to main content
Log in

The instantaneous phase difference between two parametric-excited cables with distinct parameters: characteristics and origination

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The phase-frequency characteristic is a fundamental feature of cables closely related to the synchronization phenomena. The response phase of a nonlinear vibrating cable under a specific excitation frequency is commonly believed to be the constant value in the linear solution, while higher-order terms (HOTs) are commonly omitted. However, as the variation of cable parameters, the HOTs would significantly contribute to the response and thus change the phase instantaneously. In order to ascertain the instantaneous phase difference between cables with the consideration of the HOTs, the instantaneous phase-frequency characteristics of two parametric-excited nonidentical suspended cables are investigated. The dimensionless dynamic equations of a two-cable system were derived, and the discrete model was obtained using the Galerkin method and then solved by the Multiple Scales Method (MSM). The MSM solution was verified simultaneously using the Runge–Kutta method (R-K) and the Finite Element Method (FEM). Results show that the HOTs’ influence on the instantaneous phase is non-negligible in some frequency ranges. The origination of the instantaneous phase difference between the two distinct cables comes from two aspects: (i) the difference in phase shift values (PSVs) of linear terms; and (ii) the proportion difference of drift terms (DTs) in HOTs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

The current study’s data are available from the corresponding author upon reasonable request.

References

  1. Pikovsky, A., Rosenblum, M.: Synchronization: a universal concept in nonlinear sciences. AAPT 70(6), 655–655 (2002). https://doi.org/10.1119/1.1475332

    Article  Google Scholar 

  2. Perlikowski, P., Kapitaniak, M., Czolczynski, K., Stefanski, A., Kapitaniak, T.: Chaos in coupled clocks. Int. J. Bifurcat. Chaos. 22, 12 (2013). https://doi.org/10.1142/s0218127412502884

    Article  MATH  Google Scholar 

  3. Wu, Y., Wang, N., Li, L., Xiao, J.: Anti-phase synchronization of two coupled mechanical metronomes. Chaos 22(2), 023146 (2012). https://doi.org/10.1063/1.4729456

    Article  MathSciNet  MATH  Google Scholar 

  4. Czolczynski, K., Perlikowski, P., Stefanski, A., Kapitaniak, T.: Synchronization of the self-excited pendula suspended on the vertically displacing beam. Commun. Nonlinear. Sci. Numer. Simul. 18(2), 386–400 (2013). https://doi.org/10.1016/j.cnsns.2012.07.007

    Article  MathSciNet  MATH  Google Scholar 

  5. Kapitaniak, M., Perlikowski, P., Kapitaniak, T.: Synchronous motion of two vertically excited planar elastic pendula. Commun. Nonlinear. Sci. Numer. Simul. 18(8), 2088–2096 (2013). https://doi.org/10.1016/j.cnsns.2012.12.030

    Article  MathSciNet  MATH  Google Scholar 

  6. Savor, Z., Radic, J., Hrelja, G.: Cable vibrations at dubrovnik bridge. Bridge Structures. 2(2), 97–106 (2006). https://doi.org/10.1080/15732480600855800

    Article  Google Scholar 

  7. Matsumoto, M., Shirato, H., Yagi, T., Goto, M., Sakai, S., Ohya, J.: Field observation of the full-scale wind-induced cable vibration. J. Wind. Eng. Ind. Aerod. 91(1–2), 13–26 (2003). https://doi.org/10.1016/S0167-6105(02)00332-X

    Article  Google Scholar 

  8. Jafari, M., Hou, F., Abdelkefi, A.: Wind-induced vibration of structural cables. Nonlinear Dyn. 45, 135 (2020). https://doi.org/10.1007/s11071-020-05541-6

    Article  Google Scholar 

  9. Kang, H., Guo, T., Zhu, W.: Multimodal interaction analysis of a cable-stayed bridge with consideration of spatial motion of cables. Nonlinear Dyn. 99(1), 123–147 (2019). https://doi.org/10.1007/s11071-019-05064-9

    Article  MATH  Google Scholar 

  10. Kang, H., Cong, Y., Yan, G.: Theoretical analysis of dynamic behaviors of cable-stayed bridges excited by two harmonic forces. Nonlinear Dyn. 102(2), 965–992 (2020). https://doi.org/10.1007/s11071-020-05763-8

    Article  Google Scholar 

  11. Zhou, Q., Larsen, J., Nielsen, S.R., Qu, W.: Nonlinear stochastic analysis of subharmonic response of a shallow cable. Nonlinear Dyn. 48(1–2), 97–114 (2006). https://doi.org/10.1007/s11071-006-9076-2

    Article  MATH  Google Scholar 

  12. Guo, T., Kang, H., Wang, L., Zhao, Y.: An inclined cable excited by a non-ideal massive moving deck: An asymptotic formulation. Nonlinear Dyn. 95(1), 749–767 (2019). https://doi.org/10.1007/s11071-018-4594-2

    Article  Google Scholar 

  13. Rega, G., Settimi, V., Lenci, S.: Chaos in one-dimensional structural mechanics. Nonlinear Dyn. 102(2), 785–834 (2020). https://doi.org/10.1007/s11071-020-05849-3

    Article  Google Scholar 

  14. Zulli, D., Piccardo, G., Luongo, A.: On the nonlinear effects of the mean wind force on the galloping onset in shallow cables. Nonlinear Dyn. 103(4), 3127–3148 (2021). https://doi.org/10.1007/s11071-020-05886-y

    Article  Google Scholar 

  15. Nayfeh, A.H., Arafat, H.N., Chin, C.-M., Lacarbonara, W.: Multimode interactions in suspended cables. J. Vib. Control 8(3), 337–387 (2002). https://doi.org/10.1177/107754602023687

    Article  MathSciNet  MATH  Google Scholar 

  16. Lacarbonara, W., Rega, G., Nayfeh, A.H., Analytical treatment for structural one-dimensional systems: Resonant non-linear normal modes. Part I. Int. J. Nonlin. Mech. 38, 851–872 (2003)

    Article  Google Scholar 

  17. Lacarbonara, W., Activation/orthogonality conditions for shallow structural systems: Resonant non-linear normal modes. Part II. Int. J. Nonlin. Mech. 38, 873–887 (2003)

    Article  Google Scholar 

  18. Ni, Y.Q., Wang, X.Y., Chen, Z.Q., Ko, J.M.: Field observations of rain-wind-induced cable vibration in cable-stayed dongting lake bridge. J. Wind. Eng. Ind. Aerod. 95(5), 303–328 (2007). https://doi.org/10.1016/j.jweia.2006.07.001

    Article  Google Scholar 

  19. Krenk, S.: Vibrations of a taut cable with an external damper. J. Appl. Mech. 67, 772–776 (2000). https://doi.org/10.1115/1.1322037

    Article  MATH  Google Scholar 

  20. Gu, M., Du, X.: Experimental investigation of rain-wind-induced vibration of cables in cable-stayed bridges and its mitigation. J. Wind. Eng. Ind. Aerod. 93(1), 79–95 (2005). https://doi.org/10.1016/j.jweia.2004.09.003

    Article  Google Scholar 

  21. Zhao, Y., Peng, J., Zhao, Y., Chen, L.: Effects of temperature variations on nonlinear planar free and forced oscillations at primary resonances of suspended cables. Nonlinear Dyn. 89(4), 2815–2827 (2017). https://doi.org/10.1007/s11071-017-3627-6

    Article  MathSciNet  Google Scholar 

  22. Guo, T., Rega, G., Kang, H., Wang, L.: Two perturbation formulations of the nonlinear dynamics of a cable excited by a boundary motion. Appl. Math. Mode. 79, 434–450 (2020). https://doi.org/10.1016/j.apm.2019.10.045

    Article  MathSciNet  MATH  Google Scholar 

  23. Liu, M., Yang, W., Chen, W., Xiao, H., Li, H.: Experimental Investigation on Vortex-Induced Vibration Mitigation of Stay Cables in Long-Span Bridges Equipped with Damped Crossties. J. Aerospace Eng. 32(5), 04019072 (2019). https://doi.org/10.1061/(asce)as.1943-5525.0001061

    Article  Google Scholar 

  24. Di, F., Sun, L., Chen, L.: Optimization of hybrid cable networks with dampers and cross-ties for vibration control via multi-objective genetic algorithm. Mech. Syst. Signal Pr. 166, 108454 (2022). https://doi.org/10.1016/j.ymssp.2021.108454

    Article  Google Scholar 

  25. Zhou, H., Zhou, X., Yao, G., Sun, L., Xing, F.: Free vibration of two taut cables interconnected by a damper. Struct. Control Health Monit. 26(10), e2423 (2019). https://doi.org/10.1002/stc.2423

    Article  Google Scholar 

  26. Sun, L., Hong, D., Chen, L.: Cables interconnected with tuned inerter damper for vibration mitigation. Eng. Struct. 151, 57–67 (2017). https://doi.org/10.1016/j.engstruct.2017.08.009

    Article  Google Scholar 

  27. Gian, F.G., Luca, C., Bernardo, B.: Modeling “unilateral’’ response in the cross-ties of a cable network: Deterministic vibration. J. Sound Vib. 333(19), 4427–4443 (2014). https://doi.org/10.1016/j.jsv.2014.04.030

    Article  Google Scholar 

  28. Faravelli, L., Ubertini, F.: Nonlinear state observation for cable dynamics. J. Vib Control. 15(7), 1049–1077 (2009). https://doi.org/10.1177/1077546308094253

    Article  MathSciNet  MATH  Google Scholar 

  29. Su, X., Kang, H., Guo, T.: Modelling and energy transfer in the coupled nonlinear response of a 1:1 internally resonant cable system with a tuned mass damper. Mech. Syst. Signal Pr. 162, 87 (2022). https://doi.org/10.1016/j.ymssp.2021.108058

    Article  Google Scholar 

  30. Guo, T., Kang, H., Wang, L., Zhao, Y.: Nonlinear vibrations for double inclined cables-deck beam coupled system using asymptotic reductions. Int. J. Nonlin. Mech. 108, 33–45 (2019). https://doi.org/10.1016/j.ijnonlinmec.2018.10.003

    Article  Google Scholar 

  31. Abdel-Ghaffar, A.M., Khalifa, M.A.: Importance of cable vibration in dynamics of cable-stayed bridges. J. Eng. Mech. 117(11), 2571–2589 (1991). https://doi.org/10.1061/(ASCE)0733-9399(1991)117:11(2571)

    Article  Google Scholar 

  32. Ahmad, J., Cheng, S.: Effect of cross-link stiffness on the in-plane free vibration behaviour of a two-cable network. Eng. Struct. 52, 570–580 (2013). https://doi.org/10.1016/j.engstruct.2013.03.018

    Article  Google Scholar 

  33. Zhou, H., Yang, X., Sun, L., Xing, F.: Free vibrations of a two-cable network with near-support dampers and a cross-link. Struct. Control Health Monit. 22(9), 1173–1192 (2015). https://doi.org/10.1002/stc.1738

    Article  Google Scholar 

  34. Lepidi, M., Gattulli, V.: A parametric multi-body section model for modal interactions of cable-supported bridges. J. Sound Vib. 333(19), 4579–4596 (2014). https://doi.org/10.1016/j.jsv.2014.04.053

    Article  Google Scholar 

  35. Sun, C., Zhao, Y., Peng, J., Kang, H., Zhao, Y.: Multiple internal resonances and modal interaction processes of a cable-stayed bridge physical model subjected to an invariant single-excitation. Eng. Struct. 172, 938–955 (2018). https://doi.org/10.1016/j.engstruct.2018.06.088

    Article  Google Scholar 

  36. Pai, P.F., Palazotto, A.N.: Detection and identification of nonlinearities by amplitude and frequency modulation analysis. Mech. Syst. Signal Pr. 22(5), 1107–1132 (2008). https://doi.org/10.1016/j.ymssp.2007.11.006

    Article  Google Scholar 

  37. Boashash, B.: Estimating and interpreting the instantaneous frequency of a signal. Proc. IEEE. 80(4), 520–568 (1992). https://doi.org/10.1109/5.135376

    Article  Google Scholar 

  38. Van der Pol, B., Van der Markv, J.: Frequency demultiplication. Nature 120(3019), 363–364 (1927). https://doi.org/10.1038/120363a0

    Article  Google Scholar 

  39. Nayfeh, A.H., Mook, D.T. (eds.): Nonlinear Oscillations. Wiley, New York (1979)

  40. Nayfeh, A.H., Pai, P.F. (eds.): Linear and Nonlinear Structural Mechanics. Wiley, New York (2004)

  41. Kamel, M., Hamed, Y.: Nonlinear analysis of an elastic cable under harmonic excitation. Acta Mech. 214(3–4), 315–325 (2010). https://doi.org/10.1007/s00707-010-0293-x

  42. Wang, Z., Kang, H., Sun, C., Zhao, Y., Yi, Z.: Modeling and parameter analysis of in-plane dynamics of a suspension bridge with transfer matrix method. Acta Mech. 225(12), 3423–3435 (2014). https://doi.org/10.1007/s00707-014-1114-4

    Article  MathSciNet  MATH  Google Scholar 

  43. Wang, L., Zhao, Y.: Large amplitude motion mechanism and non-planar vibration character of stay cables subject to the support motions. J. Sound Vib. 327(1–2), 121–133 (2009). https://doi.org/10.1016/j.jsv.2009.06.013

    Article  Google Scholar 

  44. Sun, C., Zhao, Y., Wang, Z., Peng, J.: Effects of longitudinal girder vibration on non-linear cable responses in cable-stayed bridges. Eur. J. Environ. Civ. En. 21(1), 94–107 (2015). https://doi.org/10.1080/19648189.2015.1093555

    Article  Google Scholar 

  45. Wu, Q., Takahashi, K., Nakamura, S.: Formulae for frequencies and modes of in-plane vibrations of small-sag inclined cables. J. Sound Vib. 279(3–5), 1155–1169 (2005). https://doi.org/10.1016/j.jsv.2004.01.004

    Article  Google Scholar 

  46. Kang, H., Zhu, H., Zhao, Y., Yi, Z.: In-plane non-linear dynamics of the stay cables. Nonlinear Dyn. 73(3), 1385–1398 (2013). https://doi.org/10.1007/s11071-013-0871-2

    Article  MathSciNet  Google Scholar 

  47. Hou, S., Dong, B., Fan, J., Wu, G., Wang, H., Han, Y., Zhao, X.: Variational mode decomposition based time-varying force identification of stay cables. Appl. Sci. 11, 3 (2021). https://doi.org/10.3390/app11031254

    Article  Google Scholar 

  48. Li, J., Li, S., Zhang, S.: Study on nonlinear equations of motion of stay cables considering stiffness, sag and damping. J. Dis. Prevent. Mitig. Eng. 30, 222–225 (2010). https://doi.org/10.13409/j.cnki.jdpme.2010.s1.024

Download references

Acknowledgements

Thanks to Cong Li for his help in the verification and comparison of the revised manuscript.

Funding

This work was supported by the National Natural Science Foundation of China (grant number 51808085).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ceshi Sun.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, C., Lin, J., Deng, Z. et al. The instantaneous phase difference between two parametric-excited cables with distinct parameters: characteristics and origination. Nonlinear Dyn 111, 9939–9955 (2023). https://doi.org/10.1007/s11071-023-08344-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-08344-7

Keywords

Navigation