Skip to main content
Log in

Dynamic modeling and identification of low impact docking mechanism based on symmetric excitation trajectory

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Inertial and nonlinear friction parameters precise identification of Stewart platform (SP) is a pending problem owing to the strong coupling and small workspace. This paper proposes a novel identification model based on symmetric excitation trajectory (SET), which is verified on low impact docking mechanism (LIDM, a typical SP). Firstly, the SET is defined, and its decoupling and filtering characteristics of the SP are analyzed. The dynamic equation of the LIDM is derived from Boltzmann–Hamel–d’alembert formula, and a typical dynamic parameter identification model (TM) is obtained. Then, a symmetric dynamic parameter identification model (SM) with the decoupling characteristic is derived from the SET. Moreover, the SM is improved according to the nonlinear friction phenomenon, and a nonlinear dynamic parameter identification model (SM_Non) including acceleration term is established. Besides, the speed-span index is given to ensure sufficient excitation of friction at different velocities during the identification process. Finally, experiments on the LIDM demonstrate the validity and accuracy of the proposed methods. The results of joint current prediction experiments show that the root mean square error of the SM_Non is 92.789% lower than that of the TM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Dasgupta, B., Mruthyunjaya, T.: The stewart platform manipulator: a review. Mech. Mach. Theory 35(1), 15–40 (2000). https://doi.org/10.1016/S0094-114X(99)00006-3

    Article  MathSciNet  MATH  Google Scholar 

  2. He, Z., Feng, X., Zhu, Y., Yu, Z., Li, Z., Zhang, Y., Wang, Y., Wang, P., Zhao, L.: Progress of stewart vibration platform in aerospace micro-vibration control. Aerospace (2022). https://doi.org/10.3390/aerospace9060324

    Article  Google Scholar 

  3. Chen, C.-T., Renn, J.-C., Yan, Z.-Y.: Experimental identification of inertial and friction parameters for electro-hydraulic motion simulators. Mechatronics 21(1), 1–10 (2011). https://doi.org/10.1016/j.mechatronics.2010.07.012

    Article  Google Scholar 

  4. Kizir, S., Bingul, Z.: Design and development of a stewart platform assisted and navigated transsphenoidal surgery. Turkish J. Electric. Eng. Comput. Sci. (2019). https://doi.org/10.3906/elk-1608-145

    Article  Google Scholar 

  5. Bernard, R., Albright, S.: Robot calibration. Springer (1993)

  6. Chen, C., Nie, H., Chen, J., Wang, X.: A velocity-based impedance control system for a low impact docking mechanism (lidm). Sensors (Basel) 14(12), 22998–3016 (2014). https://doi.org/10.3390/s141222998

    Article  Google Scholar 

  7. Liu, G., Xu, C., Zhu, Y., Zhao, J.: Monocular vision-based pose determination in close proximity for low impact docking. Sensors (2019). https://doi.org/10.3390/s19153261

    Article  Google Scholar 

  8. Wu, J., Wang, J., You, Z.: An overview of dynamic parameter identification of robots. Robot. Comput. Integr. Manuf. 26(5), 414–419 (2010). https://doi.org/10.1016/j.rcim.2010.03.013

  9. Urrea, C., Pascal, J.: Design, simulation, comparison and evaluation of parameter identification methods for an industrial robot. Comput. Electr. Eng. 67, 791–806 (2018). https://doi.org/10.1016/j.compeleceng.2016.09.004

  10. Jia, J., Zhang, M., Li, C., Gao, C., Zang, X., Zhao, J.: Improved dynamic parameter identification method relying on proprioception for manipulators. Nonlinear Dyn. 105(2), 1373–1388 (2021). https://doi.org/10.1007/s11071-021-06612-y

    Article  Google Scholar 

  11. Danaei, B., Arian, A., Tale Masouleh, M., Kalhor, A.: Dynamic modeling and base inertial parameters determination of a 2-dof spherical parallel mechanism. Multibody Syst. Dyn. 41(4), 367–390 (2017). https://doi.org/10.1007/s11044-017-9578-3

    Article  MathSciNet  MATH  Google Scholar 

  12. Sharifzadeh, M., Arian, A., Salimi, A., Tale Masouleh, M., Kalhor, A.: An experimental study on the direct and indirect dynamic identification of an over-constrained 3-dof decoupled parallel mechanism. Mech. Mach. Theory 116, 178–202 (2017). https://doi.org/10.1016/j.mechmachtheory.2017.05.021

    Article  Google Scholar 

  13. Wen, S., Yu, H., Zhang, B., Zhao, Y., Lam, H.K., Qin, G., Wang, H.: Fuzzy identification and delay compensation based on the force/position control scheme of the 5-dof redundantly actuated parallel robot. Int. J. Fuzzy Syst. 19(1), 124–140 (2016). https://doi.org/10.1007/s40815-016-0144-6

    Article  Google Scholar 

  14. Khalil, W., Guegan, S.: Inverse and direct dynamic modeling of Gough-Stewart robots. IEEE Trans. Robot. 20(4), 754–762 (2004). https://doi.org/10.1109/tro.2004.829473

    Article  Google Scholar 

  15. Tsai, L.-W.: Solving the inverse dynamics of a Stewart-Gough manipulator by the principle of virtual work. J. Mech. Des. 122(1), 3–9 (2000). https://doi.org/10.1115/1.533540

    Article  Google Scholar 

  16. Staicu, S.: Dynamics of the 6–6 Stewart parallel manipulator. Robot. Comput. Integr. Manuf. 27(1), 212–220 (2011). https://doi.org/10.1016/j.rcim.2010.07.011

    Article  Google Scholar 

  17. Bhattacharya, S., Hatwal, H., Ghosh, A.: An on-line parameter estimation scheme for generalized Stewart platform type parallel manipulators. Mech. Mach. Theory 32(1), 79–89 (1997). https://doi.org/10.1016/0094-114X(96)00018-3

    Article  MATH  Google Scholar 

  18. Chen, C.-T.: Hybrid approach for dynamic model identification of an electro-hydraulic parallel platform. Nonlinear Dyn. 67(1), 695–711 (2011). https://doi.org/10.1007/s11071-011-0020-8

    Article  Google Scholar 

  19. Tian, T., Jiang, H., Tong, Z., He, J., Huang, Q.: An inertial parameter identification method of eliminating system damping effect for a six-degree-of-freedom parallel manipulator. Chin. J. Aeronaut. 28(2), 582–592 (2015). https://doi.org/10.1016/j.cja.2015.01.005

    Article  Google Scholar 

  20. Guo, H.B., Li, H.R.: Dynamic analysis and simulation of a six degree of freedom Stewart platform manipulator. Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci. 220(1), 61–72 (2006). https://doi.org/10.1243/095440605x32075

    Article  Google Scholar 

  21. Marques, F., Flores, P., Pimenta Claro, J.C., Lankarani, H.M.: A survey and comparison of several friction force models for dynamic analysis of multibody mechanical systems. Nonlinear Dyn. 86(3), 1407–1443 (2016). https://doi.org/10.1007/s11071-016-2999-3

    Article  MathSciNet  Google Scholar 

  22. Marques, F., Flores, P., Claro, J.C.P., Lankarani, H.M.: Modeling and analysis of friction including rolling effects in multibody dynamics: a review. Multibody Syst. Dyn. 45(2), 223–244 (2018). https://doi.org/10.1007/s11044-018-09640-6

    Article  MathSciNet  Google Scholar 

  23. Makkar, C., Dixon, W., Sawyer, W., Hu, G.: A new continuously differentiable friction model for control systems design. In: Proceedings, 2005 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, pp. 600–605. IEEE. https://doi.org/10.1109/AIM.2005.1511048

  24. Johanastrom, K., Canudas-de-Wit, C.: Revisiting the lugre friction model. IEEE Control. Syst. 28(6), 101–114 (2008). https://doi.org/10.1109/mcs.2008.929425

    Article  MathSciNet  MATH  Google Scholar 

  25. Lampaert, V., Swevers, J., Al-Bender, F.: Modification of the leuven integrated friction model structure. IEEE Trans. Autom. Control 47(4), 683–687 (2002). https://doi.org/10.1109/9.995050

    Article  MathSciNet  MATH  Google Scholar 

  26. Chen, C.-T., Liao, T.-T.: Optimal path programming of the Stewart platform manipulator using the Boltzmann–Hamel–d’alembert dynamics formulation model. Adv. Robot. 22(6–7), 705–730 (2012). https://doi.org/10.1163/156855308x305281

    Article  Google Scholar 

  27. Taghirad, H.D.: Parallel Robots: Mechanics and Control. CRC Press, Boca Raton (2013)

    Book  Google Scholar 

  28. Briot, S., Gautier, M.: Global identification of joint drive gains and dynamic parameters of parallel robots. Multibody Syst. Dyn. 33(1), 3–26 (2013). https://doi.org/10.1007/s11044-013-9403-6

  29. Swevers, J., Verdonck, W., Naumer, B., Pieters, S., Biber, E.: An experimental robot load identification method for industrial application. Int. J. Robot. Res. 21(8), 701–712 (2002). https://doi.org/10.1177/027836402761412449

    Article  Google Scholar 

  30. Calafiore, G., Indri, M., Bona, B.: Robot dynamic calibration: Optimal excitation trajectories and experimental parameter estimation. J. Robot. Syst. 18(2), 55–68 (2001). https://doi.org/10.1002/1097-4563(200102)18:2<55::AID-ROB1005>3.0.CO;2-O

    Article  MATH  Google Scholar 

  31. Revay, M., Wang, R., Manchester, I.R.: A convex parameterization of robust recurrent neural networks. IEEE Control Syst. Lett. 5(4), 1363–1368 (2021). https://doi.org/10.1109/lcsys.2020.3038221

    Article  MathSciNet  Google Scholar 

  32. Donahoe, S.R.: International docking system standard (IDSS) interface definition document (IDD) revision f (2022). https://www.internationaldockingstandard.com/downloads.html

  33. Swevers, J., Ganseman, C., Tukel, D.B., De Schutter, J., Van Brussel, H.: Optimal robot excitation and identification. IEEE Trans. Robot. Autom. 13(5), 730–740 (1997). https://doi.org/10.1109/70.631234

    Article  Google Scholar 

  34. Yang, Y.-L., Wei, Y., Lou, J., Fu, L., Zhao, X.: Nonlinear dynamic analysis and optimal trajectory planning of a high-speed macro-micro manipulator. J. Sound Vib. 405, 112–132 (2017). https://doi.org/10.1016/j.jsv.2017.05.047

    Article  Google Scholar 

  35. Wilson, A.D., Schultz, J.A., Murphey, T.D.: Trajectory optimization for well-conditioned parameter estimation. IEEE Trans. Autom. Sci. Eng. 12(1), 28–36 (2015). https://doi.org/10.1109/tase.2014.2323934

    Article  Google Scholar 

  36. Ltd., E.M.C.: Maestro Administrative and motion API (2019)

  37. Stürz, Y.R., Affolter, L.M., Smith, R.S.: Parameter identification of the KUKA LBR iiwa robot including constraints on physical feasibility. IFAC-PapersOnLine 50(1), 6863–6868 (2017). https://doi.org/10.1016/j.ifacol.2017.08.1208

    Article  Google Scholar 

Download references

Funding

This research work was supported by National Natural Science Foundation of China (NSFC) [grant numbers U21B6002] and National key research and development program[grant numbers 2019YFB1312700].

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Congcong Xu, Gangfeng Liu, Changle Li, Yanhe Zhu and Jie Zhao. The first draft of the manuscript was written by Congcong Xu and Gangfeng Liu. All authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Gangfeng Liu.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (mp4 3466 KB)

Appendices

Appendix A: Inertia matrix, Coriolis and centrifugal terms, gravity vector

Inertial parameters of the moving platform at the coordinate system \({{O}_{B}}-{{X}_{B}}{{Y}_{B}}{{Z}_{B}}\):

$$\begin{aligned} \left\{ \begin{array}{*{35}{l}} {\varvec{M}_{P}}=\varvec{J}_{C}^{T}{\varvec{M}_{C}}{\varvec{J}_{C}} \\ {\varvec{C}_{P}}=\varvec{J}_{C}^{T}{\varvec{M}_{C}}{\varvec{{\dot{J}}}_{C}}+\varvec{J}_{C}^{T}{\varvec{C}_{C}}{\varvec{J}_{C}} \\ {\varvec{G}_{P}}=\varvec{J}_{C}^{T}{\varvec{G}_{C}} \\ \end{array} \right. , \end{aligned}$$
(A1)

where \({\varvec{M}_{C}}=\left[ \begin{matrix} m{\varvec{I}_{3\times 3}} &{} {\varvec{0}_{3\times 3}} \\ {\varvec{0}_{3\times 3}} &{} {\varvec{I}_{C}} \\ \end{matrix} \right] \), \({\varvec{C}_{C}}=\left[ \begin{matrix} {\varvec{0}_{3\times 3}} &{} {\varvec{0}_{3\times 3}} \\ {\varvec{0}_{3\times 3}} &{} \varvec{\omega } \times {\varvec{I}_{C}} \\ \end{matrix} \right] \), \({\varvec{G}_{C}}=\left[ \begin{matrix} m\varvec{g} \\ {\varvec{0}_{3\times 1}} \\ \end{matrix} \right] \) and \({\varvec{J}_{C}}=\left[ \begin{matrix} {\varvec{I}_{3\times 3}} &{} -{{({}^{A}{\varvec{R}_{B}}{}^{B}\varvec{c})}_{\times }} \\ {\varvec{0}_{3\times 3}} &{} {\varvec{I}_{3\times 3}} \\ \end{matrix} \right] \). The inertial parameters of joint (the sum of the upper and lower parts ):

$$\begin{aligned} \left\{ \begin{array}{*{35}{l}} {\varvec{M}_{i}}=-{{m}_{{{c}_{e}}}}\hat{s}_{{{i}_{\times }}}^{2}+{{m}_{2}}{{{\hat{s}}}_{i}}\hat{\varvec{s}}_{i}^{T}-\frac{1}{l_{i}^{2}}\left( {{I}_{c1}}+{{I}_{c2}} \right) \hat{\varvec{s}}_{{{i}_{\times }}}^{2} \\ {\varvec{C}_{i}}=-\frac{1}{l_{i}^{2}}{{m}_{2}}{{c}_{2}}{{{\hat{\varvec{s}}}}_{i}}\dot{\varvec{x}}_{i}^{T}\hat{\varvec{s}}_{{{i}_{\times }}}^{2}+\frac{2}{{{l}_{i}}}{{m}_{{{c}_{o}}}}{{{\dot{l}}}_{i}}\hat{\varvec{s}}_{{{i}_{\times }}}^{2} \\ {\varvec{G}_{i}}=\left( {{m}_{{{g}_{e}}}}\hat{\varvec{s}}_{{{i}_{\times }}}^{2}-{{m}_{2}}{{{\hat{\varvec{s}}}}_{i}}\hat{\varvec{s}}_{i}^{T} \right) \varvec{g} \\ \end{array} \right. , \end{aligned}$$
(A2)

where \({{m}_{{{c}_{e}}}}=\frac{1}{l_{i}^{2}}\left( {{m}_{1}}c_{1}^{2}+{{m}_{2}}{{\left( {{l}_{i}}-{{c}_{{{i}_{2}}}} \right) }^{2}} \right) \), \({{m}_{{{c}_{o}}}}={{m}_{{{c}_{e}}}}+\frac{1}{{{l}_{i}}}{{m}_{2}}\left( {{l}_{i}}-{{c}_{2}} \right) +\frac{1}{l_{i}^{2}}\left( {{I}_{c1}}+{{I}_{c2}} \right) \) and \({{m}_{{{g}_{e}}}}=\frac{1}{{{l}_{i}}}\left( {{m}_{1}}{{c}_{1}}+{{m}_{2}}\left( {{l}_{i}}-{{c}_{2}} \right) \right) \).

Appendix B: Definitions of symbol and their operation

Given \(\varvec{\omega } ={{[\begin{matrix} {{\omega }_{x}} &{} {{\omega }_{y}} &{} {{\omega }_{z}} \\ \end{matrix}]}^{T}}\) and \(\varvec{I}=\left[ \begin{matrix} {{I}_{11}} &{} {{I}_{12}} &{} {{I}_{13}} \\ {{I}_{12}} &{} {{I}_{22}} &{} {{I}_{23}} \\ {{I}_{13}} &{} {{I}_{23}} &{} {{I}_{33}} \\ \end{matrix} \right] \), define the following operations:

$$\begin{aligned} \tilde{\varvec{\omega }}=\left[ \begin{matrix} {{\omega }_{x}} &{} {{\omega }_{y}} &{} {{\omega }_{z}} &{} 0 &{} 0 &{} 0 \\ 0 &{} {{\omega }_{x}} &{} 0 &{} {{\omega }_{y}} &{} {{\omega }_{z}} &{} 0 \\ 0 &{} 0 &{} {{\omega }_{x}} &{} 0 &{} {{\omega }_{y}} &{} {{\omega }_{z}} \\ \end{matrix} \right] \text { }\\ and\text { }\tilde{\varvec{I}}={{[\begin{matrix} {{I}_{11}}&{{I}_{12}}&{{I}_{13}}&{{I}_{22}}&{{I}_{23}}&{{I}_{33}} \nonumber \end{matrix}]}^{T}}. \end{aligned}$$
(B3)

Then,

$$\begin{aligned} \left\{ \begin{array}{*{35}{l}} \varvec{\Gamma }_1=\dot{\varvec{w}}_i \times \hat{\varvec{s}}_i-\left\| \varvec{w}_i\right\| _2^2 \hat{\varvec{s}}_i \\ \varvec{\Gamma }_2=\varvec{g}-2 \dot{l}_i\left( \varvec{w}_i\times \hat{\varvec{s}}_i\right) -\ddot{l}_i \hat{\varvec{s}}_i-l_i \varvec{\Gamma }_1 \\ \varvec{\Gamma }_3=\tilde{\dot{\varvec{w}}}_{i \times } + \varvec{w}_{i \times } \tilde{\varvec{w}}_{i \times } \\ \end{array} \right. , \end{aligned}$$
(B4)

In addition, \(\varvec{R}_C^*\) is solved by \({ }^A \varvec{R}_B{ }^B \varvec{I}_C{ }^A \varvec{R}_B^T=\varvec{R}_C^* \tilde{\varvec{I}}_C; \)\(\varvec{R}_i^*\) is solved by \({ }^A \varvec{R}_B{ }^B \varvec{I}_i{ }^A \varvec{R}_B^T=\varvec{R}_i^* \tilde{\varvec{I}}_i\) .

Appendix C: Parameters of the excitation trajectories S1, S2 and S3 in the form of Fourier series

 

\(\varvec{a}_k^i(\times 10^3)\)

\(\varvec{a}_k^i(\times 10^3)\)

S1

\(\left[ \begin{array}{lllll} 1.049 &{} 2.066 &{} 0.692 &{} -4.296 &{} 0.489 \\ 0.036 &{} 1.226 &{} 0.831 &{} 5.863 &{} -7.956 \\ -2.24 &{} -9.559 &{} -11.217 &{} -59.974 &{} 82.99 \\ 2.426 &{} -19.403 &{} -72.245 &{} 57.12 &{} 32.102 \\ -7.298 &{} -3.106 &{} 12.935 &{} -4.227 &{} 1.695 \\ 3.444 &{} 5.996 &{} -45.783 &{} -11.371 &{} 47.714 \\ \end{array} \right] \)

\(\left[ \begin{array}{lllll} -0.692 &{} -0.899 &{} 1.847 &{} 7.196 &{} -6.366 \\ 0.091 &{} -1.017 &{} 5.756 &{} -9.873 &{} 4.833 \\ -13.363 &{} 37.725 &{} -19.755 &{} 13.317 &{} -11.218 \\ 3.521 &{} -25.813 &{} -13.796 &{} 115.605 &{} -74.585 \\ 10.032 &{} -30.001 &{} -66.107 &{} 189.692 &{} -102.095 \\ 3.924 &{} 4.425 &{} 36.202 &{} -148.313 &{} 94.375 \\ \end{array} \right] \)

S2

\(\left[ \begin{array}{lllll} -0.074 &{} -2.097 &{} 0.753 &{} -1.557 &{} 2.976 \\ -0.222 &{} 0.618 &{} -1.201 &{} 0.047 &{} 0.758 \\ 5.832 &{} -26.593 &{} 9.476 &{} -11.087 &{} 22.371 \\ 6.807 &{} -19.542 &{} -36.893 &{} -5.058 &{} 54.686 \\ 0.41 &{} -15.493 &{} -12.091 &{} 106.989 &{} -79.816 \\ 13.178 &{} -8.695 &{} -64.457 &{} 9.248 &{} 50.725 \\ \end{array} \right] \)

\(\left[ \begin{array}{lllll} 0.15 &{} 0.311 &{} 4.392 &{} -13.461 &{} 7.979 \\ -0.612 &{} 0.901 &{} -4.36 &{} 12.662 &{} -7.751 \\ 1.669 &{} 27.299 &{} -24.375 &{} -87.416 &{} 73.305 \\ -5.242 &{} 27.762 &{} -74.773 &{} 103.593 &{} -48.067 \\ 1.658 &{} -8.953 &{} 60.478 &{} -119.257 &{} 62.369 \\ -25.785 &{} 8.812 &{} 56.707 &{} 99.507 &{} -111.997 \\ \end{array} \right] \)

S3

\(\left[ \begin{array}{lllll} -0.48 &{} -0.015 &{} 1.199 &{} 3.046 &{} -3.751 \\ 0.198 &{} -0.05 &{} -0.264 &{} -0.62 &{} 0.737 \\ 4.808 &{} -2.556 &{} 1.539 &{} 63.499 &{} -67.29 \\ 9.172 &{} 6.122 &{} 15.399 &{} -57.871 &{} 27.179 \\ -0.433 &{} -21.87 &{} 6.677 &{} -18.875 &{} 34.501 \\ -1.737 &{} 12.78 &{} 34.642 &{} -1.949 &{} 43.737 \\ \end{array} \right] \)

\(\left[ \begin{array}{lllll} -0.616 &{} -1.048 &{} -1.318 &{} 14.589 &{} -10.338 \\ 1.173 &{} 0.587 &{} -1.265 &{} -12.252 &{} 10.091 \\ -10.006 &{} 28.794 &{} 6.641 &{} -43.38 &{} 21.203 \\ -22.781 &{} 10.125 &{} 21.725 &{} 144.248 &{} -127.927 \\ -0.783 &{} 22.299 &{} 24.338 &{} -153.4 &{} 99.354 \\ 1.861 &{} 58.009 &{} -57.457 &{} -154.361 &{} 134.387 \\ \end{array} \right] \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, C., Liu, G., Li, C. et al. Dynamic modeling and identification of low impact docking mechanism based on symmetric excitation trajectory. Nonlinear Dyn 111, 9919–9937 (2023). https://doi.org/10.1007/s11071-023-08341-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-08341-w

Keywords

Navigation