Skip to main content
Log in

Nested-spectral analysis reveals a disruption of behavioral-related dynamic functional balance in the aging brain

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The relationship between the age-related reorganization of brain networks and individual behavior has attracted much attention. However, how age induces changes in neural activity at different frequencies in the brain to balance the demands of network integration and segregation, and how age-induced changes in network integration and segregation relate to behavior remain enigmatic. Here, a nested-spectral partition method was used to analyze behavioral-related dynamic functional balance in the aging brain with electroencephalogram signals collected from 56 healthy participants (age: 20–80 years) at rest. The nested-spectral partition approach measures hierarchical segregation and integration across multiple levels by detecting hierarchical modules in brain functional networks. Declines in general personality and general cognitive ability in older adults were captured by exploratory factor analysis. We showed that the brain network of elderly individuals contains more hierarchical modules to generate higher segregation, and it is closer to the functional balance state in the theta and alpha bands but away from this state in the gamma band. Meanwhile, the abnormal variability of functional balance in the elderly brain supports more flexible transitions between segregated and integrated states in the alpha band but reduces the transitions in the beta and gamma bands. Crucially, the degeneration of general personality and general cognitive ability is significantly associated with higher segregation and abnormal flexibility of the brain, especially in the theta, beta, and gamma bands. Our results provide deep insights from a spectral partitioning perspective into the brain dynamic mechanisms that are associated with age-related personality and cognitive degeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data and code availability

Any data and code reported in this paper are available upon request.

References

  1. Soto, C., John, O., Gosling, S., Potter, J.: Age differences in personality traits from 10 to 65: big five domains and facets in a large cross-sectional sample. J. Pers. Soc. Psychol. 100, 330–348 (2011). https://doi.org/10.1037/a0021717

    Article  Google Scholar 

  2. Jiang, R., Calhoun, V.D., Zuo, N., Lin, D., Li, J., Fan, L., Qi, S., Sun, H., Fu, Z., Song, M., Jiang, T., Sui, J.: Connectome-based individualized prediction of temperament trait scores. Neuroimage 183, 366–374 (2018). https://doi.org/10.1016/j.neuroimage.2018.08.038

    Article  Google Scholar 

  3. Yoo, K., Rosenberg, M.D., Hsu, W.-T., Zhang, S., Li, C.-S.R., Scheinost, D., Constable, R.T., Chun, M.M.: Connectome-based predictive modeling of attention: comparing different functional connectivity features and prediction methods across datasets. Neuroimage 167, 11–22 (2018). https://doi.org/10.1016/j.neuroimage.2017.11.010

    Article  Google Scholar 

  4. Beaty, R.E., Kaufman, S.B., Benedek, M., Jung, R.E., Kenett, Y.N., Jauk, E., Neubauer, A.C., Silvia, P.J.: Personality and complex brain networks: the role of openness to experience in default network efficiency. Hum. Brain Mapp. 37, 773–779 (2016). https://doi.org/10.1002/hbm.23065

    Article  Google Scholar 

  5. Langer, N., Pedroni, A., Gianotti, L.R.R., Hänggi, J., Knoch, D., Jäncke, L.: Functional brain network efficiency predicts intelligence. Hum. Brain Mapp. 33, 1393–1406 (2012). https://doi.org/10.1002/hbm.21297

    Article  Google Scholar 

  6. Betzel, R.F., Byrge, L., He, Y., Goñi, J., Zuo, X.-N., Sporns, O.: Changes in structural and functional connectivity among resting-state networks across the human lifespan. Neuroimage 102, 345–357 (2014). https://doi.org/10.1016/j.neuroimage.2014.07.067

    Article  Google Scholar 

  7. Damoiseaux, J.S.: Effects of aging on functional and structural brain connectivity. Neuroimage 160, 32–40 (2017). https://doi.org/10.1016/j.neuroimage.2017.01.077

    Article  Google Scholar 

  8. Ferreira, L.K., Busatto, G.F.: Resting-state functional connectivity in normal brain aging. Neurosci. Biobehav. Rev. 37, 384–400 (2013). https://doi.org/10.1016/j.neubiorev.2013.01.017

    Article  Google Scholar 

  9. Wu, J.-T., Wu, H.-Z., Yan, C.-G., Chen, W.-X., Zhang, H.-Y., He, Y., Yang, H.-S.: Aging-related changes in the default mode network and its anti-correlated networks: a resting-state fMRI study. Neurosci. Lett. 504, 62–67 (2011). https://doi.org/10.1016/j.neulet.2011.08.059

    Article  Google Scholar 

  10. Cohen, J.R., D’Esposito, M.: The segregation and integration of distinct brain networks and their relationship to cognition. J. Neurosci. Off. J. Soc. Neurosci. 36, 12083–12094 (2016). https://doi.org/10.1523/JNEUROSCI.2965-15.2016

    Article  Google Scholar 

  11. Fornito, A., Zalesky, A., Breakspear, M.: The connectomics of brain disorders. Nat. Rev. Neurosci. 16, 159–172 (2015). https://doi.org/10.1038/nrn3901

    Article  Google Scholar 

  12. Stam, C.J.: Modern network science of neurological disorders. Nat. Rev. Neurosci. 15, 683–695 (2014). https://doi.org/10.1038/nrn3801

    Article  Google Scholar 

  13. Goh, J.O.S.: Functional dedifferentiation and altered connectivity in older adults: neural accounts of cognitive aging. Aging Dis. 2, 30–48 (2011)

    Google Scholar 

  14. Wang, R., Lin, P., Liu, M., Wu, Y., Zhou, T., Zhou, C.: Hierarchical connectome modes and critical state jointly maximize human brain functional diversity. Phys. Rev. Lett. 123, 038301 (2019). https://doi.org/10.1103/PhysRevLett.123.038301

    Article  Google Scholar 

  15. Wang, R., Liu, M., Cheng, X., Wu, Y., Hildebrandt, A., Zhou, C.: Segregation, integration, and balance of large-scale resting brain networks configure different cognitive abilities. Proc. Natl. Acad. Sci. 118, e2022288118 (2021). https://doi.org/10.1073/pnas.2022288118

    Article  Google Scholar 

  16. Wang, R., Su, X., Chang, Z., Lin, P., Wu, Y.: Flexible brain transitions between hierarchical network segregation and integration associated with cognitive performance during a multisource interference task. IEEE J. Biomed. Health Inform. 26, 1835–1846 (2022). https://doi.org/10.1109/JBHI.2021.3119940

    Article  Google Scholar 

  17. Babayan, A., Erbey, M., Kumral, D., Reinelt, J.D., Reiter, A.M.F., Röbbig, J., Schaare, H.L., Uhlig, M., Anwander, A., Bazin, P.-L., Horstmann, A., Lampe, L., Nikulin, V.V., Okon-Singer, H., Preusser, S., Pampel, A., Rohr, C.S., Sacher, J., Thöne-Otto, A., Trapp, S., Nierhaus, T., Altmann, D., Arelin, K., Blöchl, M., Bongartz, E., Breig, P., Cesnaite, E., Chen, S., Cozatl, R., Czerwonatis, S., Dambrauskaite, G., Dreyer, M., Enders, J., Engelhardt, M., Fischer, M.M., Forschack, N., Golchert, J., Golz, L., Guran, C.A., Hedrich, S., Hentschel, N., Hoffmann, D.I., Huntenburg, J.M., Jost, R., Kosatschek, A., Kunzendorf, S., Lammers, H., Lauckner, M.E., Mahjoory, K., Kanaan, A.S., Mendes, N., Menger, R., Morino, E., Näthe, K., Neubauer, J., Noyan, H., Oligschläger, S., Panczyszyn-Trzewik, P., Poehlchen, D., Putzke, N., Roski, S., Schaller, M.-C., Schieferbein, A., Schlaak, B., Schmidt, R., Gorgolewski, K.J., Schmidt, H.M., Schrimpf, A., Stasch, S., Voss, M., Wiedemann, A., Margulies, D.S., Gaebler, M., Villringer, A.: A mind-brain-body dataset of MRI, EEG, cognition, emotion, and peripheral physiology in young and old adults. Sci. Data. 6, 180308 (2019). https://doi.org/10.1038/sdata.2018.308

    Article  Google Scholar 

  18. Aydore, S., Pantazis, D., Leahy, R.M.: A note on the phase locking value and its properties. Neuroimage 74, 231–244 (2013). https://doi.org/10.1016/j.neuroimage.2013.02.008

    Article  Google Scholar 

  19. Mahjoory, K., Cesnaite, E., Hohlefeld, F.U., Villringer, A., Nikulin, V.V.: Power and temporal dynamics of alpha oscillations at rest differentiate cognitive performance involving sustained and phasic cognitive control. Neuroimage 188, 135–144 (2019). https://doi.org/10.1016/j.neuroimage.2018.12.001

    Article  Google Scholar 

  20. Zanesco, A.P., King, B.G., Skwara, A.C., Saron, C.D.: Within and between-person correlates of the temporal dynamics of resting EEG microstates. NeuroImage 211, 116631 (2020). https://doi.org/10.1016/j.neuroimage.2020.116631

    Article  Google Scholar 

  21. Aydın, S.: Cross-validated adaboost classification of emotion regulation strategies identified by spectral coherence in resting-state. Neuroinformatics 20, 627–639 (2022). https://doi.org/10.1007/s12021-021-09542-7

    Article  Google Scholar 

  22. Delorme, A., Makeig, S.: EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J. Neurosci. Methods. 134, 9–21 (2004). https://doi.org/10.1016/j.jneumeth.2003.10.009

    Article  Google Scholar 

  23. Xie, Y., Oniga, S.: A review of processing methods and classification algorithm for EEG signal. Carpathian J. Electron. Comput. Eng. 13, 23–29 (2020). https://doi.org/10.2478/cjece-2020-0004

    Article  Google Scholar 

  24. Cohen, J.: A Power Primer. American Psychological Association, Washington, DC, US (2016)

    Book  Google Scholar 

  25. Lachaux, J.-P., Rodriguez, E., Martinerie, J., Varela, F.J.: Measuring phase synchrony in brain signals. Hum. Brain Mapp. 8, 194–208 (1999)

    Article  Google Scholar 

  26. Bakhshayesh, H., Fitzgibbon, S.P., Janani, A.S., Grummett, T.S., Pope, K.J.: Detecting synchrony in EEG: a comparative study of functional connectivity measures. Comput. Biol. Med. 105, 1–15 (2019). https://doi.org/10.1016/j.compbiomed.2018.12.005

    Article  Google Scholar 

  27. Roberts, B.W., Walton, K.E., Viechtbauer, W.: Patterns of mean-level change in personality traits across the life course: a meta-analysis of longitudinal studies. Psychol. Bull. 132, 1–25 (2006). https://doi.org/10.1037/0033-2909.132.1.1

    Article  Google Scholar 

  28. Jones, C.J., Livson, N., Peskin, H.: Longitudinal hierarchical linear modeling analyses of California psychological inventory data from age 33 to 75: an examination of stability and change in adult personality. J. Pers. Assess. 80, 294–308 (2003). https://doi.org/10.1207/S15327752JPA8003_07

    Article  Google Scholar 

  29. Jorm, A.F., Christensen, H., Henderson, A.S., Jacomb, P.A., Korten, A.E., Rodgers, B.: Using the BIS/BAS scales to measure behavioural inhibition and behavioural activation: factor structure, validity and norms in a large community sample. Personal. Individ. Differ. 26, 49–58 (1998). https://doi.org/10.1016/S0191-8869(98)00143-3

    Article  Google Scholar 

  30. Sediyama, C.Y.N., Moura, R., Garcia, M.S., da Silva, A.G., Soraggi, C., Neves, F.S., Albuquerque, M.R., Whiteside, S.P., Malloy-Diniz, L.F.: Factor analysis of the Brazilian version of UPPS impulsive behavior scale. Front. Psychol. 8, 622 (2017)

    Article  Google Scholar 

  31. Geerligs, L., Renken, R.J., Saliasi, E., Maurits, N.M., Lorist, M.M.: A brain-wide study of age-related changes in functional connectivity. Cereb. Cortex N. Y. N 1991(25), 1987–1999 (2015). https://doi.org/10.1093/cercor/bhu012

    Article  Google Scholar 

  32. Ma, J., Lin, Y., Hu, C., Zhang, J., Yi, Y., Dai, Z.: Integrated and segregated frequency architecture of the human brain network. Brain Struct. Funct. 226, 335–350 (2021). https://doi.org/10.1007/s00429-020-02174-8

    Article  Google Scholar 

  33. Fong, A.H.C., Yoo, K., Rosenberg, M.D., Zhang, S., Li, C.-S.R., Scheinost, D., Constable, R.T., Chun, M.M.: Dynamic functional connectivity during task performance and rest predicts individual differences in attention across studies. Neuroimage 188, 14–25 (2019). https://doi.org/10.1016/j.neuroimage.2018.11.057

    Article  Google Scholar 

  34. Deco, G., Jirsa, V.K., McIntosh, A.R.: Resting brains never rest: computational insights into potential cognitive architectures. Trends Neurosci. 36, 268–274 (2013). https://doi.org/10.1016/j.tins.2013.03.001

    Article  Google Scholar 

  35. Pedersen, M., Zalesky, A., Omidvarnia, A., Jackson, G.D.: Multilayer network switching rate predicts brain performance. Proc. Natl. Acad. Sci. 115, 13376–13381 (2018). https://doi.org/10.1073/pnas.1814785115

    Article  Google Scholar 

  36. Malcolm, B.R., Foxe, J.J., Butler, J.S., De Sanctis, P.: The aging brain shows less flexible reallocation of cognitive resources during dual-task walking: a mobile brain/body imaging (MoBI) study. Neuroimage 117, 230–242 (2015). https://doi.org/10.1016/j.neuroimage.2015.05.028

    Article  Google Scholar 

  37. Kabbara, A., Paban, V., Weill, A., Modolo, J., Hassan, M.: Brain network dynamics correlate with personality traits. Brain Connect. 10, 108–120 (2020). https://doi.org/10.1089/brain.2019.0723

    Article  Google Scholar 

  38. Wang, R., Wang, L., Yang, Y., Li, J., Wu, Y., Lin, P.: Random matrix theory for analyzing the brain functional network in attention deficit hyperactivity disorder. Phys. Rev. E 94, 052411 (2016). https://doi.org/10.1103/PhysRevE.94.052411

    Article  Google Scholar 

  39. Wang, R., Zhang, Z.-Z., Ma, J., Yang, Y., Lin, P., Wu, Y.: Spectral properties of the temporal evolution of brain network structure. Chaos Interdiscip. J. Nonlinear Sci. 25, 123112 (2015). https://doi.org/10.1063/1.4937451

    Article  MathSciNet  MATH  Google Scholar 

  40. Khanna, A., Pascual-Leone, A., Michel, C.M., Farzan, F.: Microstates in resting-state EEG: current status and future directions. Neurosci. Biobehav. Rev. 49, 105–113 (2015). https://doi.org/10.1016/j.neubiorev.2014.12.010

    Article  Google Scholar 

  41. Hilger, K., Fukushima, M., Sporns, O., Fiebach, C.: Temporal stability of functional brain modules associated with human intelligence. Hum. Brain Mapp. 41, 362–372 (2019). https://doi.org/10.1002/hbm.24807

    Article  Google Scholar 

  42. Fiorenzato, E., Strafella, A.P., Kim, J., Schifano, R., Weis, L., Antonini, A., Biundo, R.: Dynamic functional connectivity changes associated with dementia in Parkinson’s disease. Brain 142, 2860–2872 (2019). https://doi.org/10.1093/brain/awz192

    Article  Google Scholar 

  43. Díez-Cirarda, M., Strafella, A.P., Kim, J., Peña, J., Ojeda, N., Cabrera-Zubizarreta, A., Ibarretxe-Bilbao, N.: Dynamic functional connectivity in Parkinson’s disease patients with mild cognitive impairment and normal cognition. NeuroImage Clin. 17, 847–855 (2018). https://doi.org/10.1016/j.nicl.2017.12.013

    Article  Google Scholar 

  44. Faghiri, A., Stephen, J.M., Wang, Y.-P., Wilson, T.W., Calhoun, V.D.: Changing brain connectivity dynamics: from early childhood to adulthood. Hum. Brain Mapp. 39, 1108–1117 (2018). https://doi.org/10.1002/hbm.23896

    Article  Google Scholar 

  45. Geerligs, L., Saliasi, E., Renken, R.J., Maurits, N.M., Lorist, M.M.: Flexible connectivity in the aging brain revealed by task modulations. Hum. Brain Mapp. 35, 3788–3804 (2014). https://doi.org/10.1002/hbm.22437

    Article  Google Scholar 

  46. Duffy, F.H., Albert, M.S., McAnulty, G., Garvey, A.J.: Age-related differences in brain electrical activity of healthy subjects. Ann. Neurol. 16, 430–438 (1984). https://doi.org/10.1002/ana.410160403

    Article  Google Scholar 

  47. Miraglia, F., Vecchio, F., Bramanti, P., Rossini, P.M.: EEG characteristics in “eyes-open” versus “eyes-closed” conditions: small-world network architecture in healthy aging and age-related brain degeneration. Clin. Neurophysiol. 127, 1261–1268 (2016). https://doi.org/10.1016/j.clinph.2015.07.040

    Article  Google Scholar 

  48. Jin, C., Jia, H., Lanka, P., Rangaprakash, D., Li, L., Liu, T., Hu, X., Deshpande, G.: Dynamic brain connectivity is a better predictor of PTSD than static connectivity. Hum. Brain Mapp. 38, 4479–4496 (2017). https://doi.org/10.1002/hbm.23676

    Article  Google Scholar 

  49. Finnigan, S., Robertson, I.H.: Resting EEG theta power correlates with cognitive performance in healthy older adults. Psychophysiology 48, 1083–1087 (2011). https://doi.org/10.1111/j.1469-8986.2010.01173.x

    Article  Google Scholar 

  50. Miltner, W.H.R., Braun, C., Arnold, M., Witte, H., Taub, E.: Coherence of gamma-band EEG activity as a basis for associative learning. Nature 397, 434–436 (1999). https://doi.org/10.1038/17126

    Article  Google Scholar 

  51. Klimesch, W.: EEG-alpha rhythms and memory processes. Int. J. Psychophysiol. 26, 319–340 (1997). https://doi.org/10.1016/S0167-8760(97)00773-3

    Article  Google Scholar 

  52. Lee, K.-H., Williams, L.M., Breakspear, M., Gordon, E.: Synchronous Gamma activity: a review and contribution to an integrative neuroscience model of schizophrenia. Brain Res. Rev. 41, 57–78 (2003). https://doi.org/10.1016/S0165-0173(02)00220-5

    Article  Google Scholar 

  53. Goossens, T., Vercammen, C., Wouters, J., van Wieringen, A.: Aging affects neural synchronization to speech-related acoustic modulations. Front. Aging Neurosci. 8, 133 (2016)

    Article  Google Scholar 

  54. Jaušovec, N., Jaušovec, K.: Personality, gender and brain oscillations. Int. J. Psychophysiol. 66, 215–224 (2007). https://doi.org/10.1016/j.ijpsycho.2007.07.005

    Article  Google Scholar 

  55. Long, N.M., Burke, J.F., Kahana, M.J.: Subsequent memory effect in intracranial and scalp EEG. Neuroimage 84, 488–494 (2014). https://doi.org/10.1016/j.neuroimage.2013.08.052

    Article  Google Scholar 

  56. Sala-Llonch, R., Junqué, C., Arenaza-Urquijo, E.M., Vidal-Piñeiro, D., Valls-Pedret, C., Palacios, E.M., Domènech, S., Salvà, A., Bargalló, N., Bartrés-Faz, D.: Changes in whole-brain functional networks and memory performance in aging. Neurobiol. Aging 35, 2193–2202 (2014). https://doi.org/10.1016/j.neurobiolaging.2014.04.007

    Article  Google Scholar 

  57. Gracia-Tabuenca, Z., Moreno, M.B., Barrios, F.A., Alcauter, S.: Development of the brain functional connectome follows puberty-dependent nonlinear trajectories. NeuroImage 229, 117769 (2021). https://doi.org/10.1016/j.neuroimage.2021.117769

    Article  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Grants No. 12132012, No. 11972275, No. 12272292, and No. 62071177).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization was contributed by YF; Methodology was contributed by YF and RW; Data curation was contributed by YF; Formal analysis was contributed by YF; Funding acquisition was contributed by RW, Pan Lin and YW; Investigation was contributed by YF, RW and LZ; Software was contributed by YF; Supervision was contributed by RW and YW; Visualization was contributed by YF; Writing—original draft, was contributed by YF; Writing—review & editing, was contributed by YF, RW, PL and YW.

Corresponding author

Correspondence to Ying Wu.

Ethics declarations

Conflict of interest

The authors declare no competing interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 607 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, Y., Wang, R., Zhou, L. et al. Nested-spectral analysis reveals a disruption of behavioral-related dynamic functional balance in the aging brain. Nonlinear Dyn 111, 9537–9553 (2023). https://doi.org/10.1007/s11071-023-08328-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-08328-7

Keywords

Navigation