Skip to main content
Log in

Adaptive robust maneuvering control for nonlinear systems via dynamic surface technique

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, the adaptive robust controller based on dynamic surface technique is investigated for the maneuvering problem of uncertain nonlinear systems with external disturbances. As preliminary, the definition of semi-globally uniformly practically asymptotically stable and its Lyapunov criterion are presented. The static part of controller with smooth robust compensator and adaptive law is designed to achieve the geometric task of maneuverability, and the dynamic control is proposed to reach the speed task by filtered-gradient update law. Moreover, utilizing first-order filter, the problem of “dimensional explosion” is avoided in controller design. Simulation is conducted for three-mecanum-wheeled mobile robot actuated by DC motors to illustrate the effectiveness of the control strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Young, K.D., Ozguner, U.: Variable Structure Systems, Sliding Mode and Nonlinear Control. Springer, Berlin (1999)

    Book  MATH  Google Scholar 

  2. Ortega, R., Loría, A., Nicklasson, P.J., Sira-Ramirez, H.: Passivity-Based Control of Euler-Lagrange Systems: Mechanical, Electrical and Electromechanical Applications. Springer, Berlin (1998)

    Book  Google Scholar 

  3. Krstić, M., Kokotović, P.V., Kanellakopoulos, I.: Nonlinear and Adaptive Control Design. Wiley, New York (1995)

    MATH  Google Scholar 

  4. Ioannou, P.A., Sun, J.: Robust Adaptive Control. Prentice-Hall, Englewood Cliffs (1996)

    MATH  Google Scholar 

  5. Kwan, C., Lewis, F.L.: Robust backstepping control of nonlinear systems using neural networks. IEEE Trans. Syst. Man Cybern. Part A Syst. Hum. 30(6), 753–766 (2000)

    Article  Google Scholar 

  6. Mizumoto, I. Michino, R. Tao, Y. C. and Iwai, Z.: Robust adaptive tracking control for time-varying nonlinear systems with higher order relative degree. In: Proceedings of IEEE International Conference on Decision and Control. 4, 4303–4308 (2003)

  7. Madani, T. and Benallegue, A.: Control of a quadrotor mini-helicopter via full state backstepping technique. In: Proceedings of IEEE conference on decision and control. 1515–1520 (2006)

  8. Stotsky, A. Hedrick, J. K. and Yip, P. P.: The use of sliding modes to simplify the backstepping control method. In: Proceedings of American control conference. 1703–1708 (1997)

  9. Levant, A.: Higher-order sliding modes, differentiation and output-feedback control. Int. J. Control 76(9–10), 924–941 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  10. Yip, P. P. Hedrick, J. K., Swaroop, D.: The use of linear filtering to simplify integrator backstepping control of nonlinear systems. In: Proceedings of IEEE international workshop on variable structure systems. 211–215 (1996)

  11. Shin, D.H., Kim, Y.: Reconfigurable flight control system design using adaptive neural networks. IEEE Trans. Control Syst. Technol. 12(1), 87–100 (2004)

    Article  Google Scholar 

  12. Koo, T.J.: Stable model reference adaptive fuzzy control of a class of nonlinear systems. IEEE Trans. Fuzzy Syst. 9(4), 624–636 (2001)

    Article  Google Scholar 

  13. Swaroop, D., Hedrick, J.K., Yip, P.P., Gerdes, J.C.: Dynamic surface control for a class of nonlinear systems. IEEE Trans. Autom. Control 45(10), 1893–1899 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  14. Du, J.L., Hu, X., Krstić, X.M., Sun, Y.Q.: Robust dynamic positioning of ships with disturbances under input saturation. Automatica 73, 207–214 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  15. Wu, Z. H. Lu, J. C. and Shi, J. P.: Adaptive neural dynamic surface control of morphing aircraft with input constraints. In: Proceedings of Chinese control and decision conference. 6–12 (2017)

  16. Liu, C., Chen, C.L.P., Zou, Z.J., Li, T.S.: Adaptive NN-DSC control design for path following of underactuated surface vessels with input saturation. Neurocomputing 267(6), 466–474 (2017)

    Article  Google Scholar 

  17. Farrell, J.A., Polycarpou, M.M., Sharma, M., Dong, W.J.: Command filtered backstepping. IEEE Trans. Autom. Control 54(6), 1391–1395 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  18. Dong, W.J., Farrell, J.A., Polycarpou, M.M., Djapic, V., Sharma, M.: Command filtered adaptive backstepping. IEEE Trans. Control Syst. Technol. 20(3), 566–580 (2012)

    Article  Google Scholar 

  19. Chen, M., Yu, J.: Adaptive dynamic surface control of NSVs with input saturation using a disturbance observer. Chin. J. Aeronaut. 28(003), 853–864 (2015)

    Article  Google Scholar 

  20. Rashad, R., Aboudonia, A., El-Badawy, A.: A novel disturbance observer-based backstepping controller with command filtered compensation for a MIMO system. J. Franklin Inst. 353(16), 4039–4061 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  21. Aboudonia, A., El-Badawy, A., Rashad, R.: Active anti-disturbance control of a quadrotor unmanned aerial vehicle using the command-filtering backstepping approach. Nonlinear Dyn. 90(1), 581–597 (2017)

    Article  MATH  Google Scholar 

  22. Hou, Z.G., Zou, A.M., Cheng, L., Tan, M.: Adaptive control of an electrically driven nonholonomic mobile robot via backstepping and fuzzy approach. IEEE Trans. Control Syst. Technol. 17(4), 803–815 (2009)

    Article  Google Scholar 

  23. Lee, H., Tomizuka, M.: Robust adaptive control using a universal approximator for SISO nonlinear systems. IEEE Trans. Fuzzy Syst. 8(1), 95–106 (2000)

    Article  Google Scholar 

  24. Xu, B., Shi, Z.K., Yang, C.G., Sun, F.C.: Composite neural dynamic surface control of a class of uncertain nonlinear systems in strict-feedback form. IEEE Trans. Cybern. 44(12), 2626–2634 (2014)

    Article  Google Scholar 

  25. Yu, Z.X., Li, S.G.: Neural-network-based output-feedback adaptive dynamic surface control for a class of stochastic nonlinear time-delay systems with unknown control directions. Neurocomputing 129(10), 540–547 (2014)

    Article  Google Scholar 

  26. Peng, Z.H., Wang, D., Wang, J.: Predictor-based neural dynamic surface control for uncertain nonlinear systems in strict-feedback form. IEEE Trans. Neural Netw. Learn. Syst. 28(9), 2156–2167 (2016)

    Article  MathSciNet  Google Scholar 

  27. Homayoun, B., Arefi, M.M., Vafamand, N.: Robust adaptive backstepping tracking control of stochastic nonlinear systems with unknown input saturation: a command filter approach. Int. J. Robust Nonlinear Control 30(8), 3296–3313 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  28. Skjetne, R., Fossen, T.I., Kokotović, P.V.: Adaptive maneuvering, with experiments, for a model ship in a marine control laboratory. Automatica 41(2), 289–298 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  29. Skjetne, R., Fossen, T.I., Kokotović, P.V.: Robust output maneuvering for a class of nonlinear systems. Automatica 40(3), 373–383 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  30. Ma, J. Ren, J. S. Bai, W. W. and Li, H. Y.: Backstepping sliding mode maneuvering control for a class of surface ships. In: Proceedings of IEEE data driven control and learning systems conference. 935–940 (2020)

  31. Skjetne, R. Ihle, I. A. F. and Fossen, T. I.: Formation control by synchronizing multiple maneuvering systems. In: IFAC Proceedings Volumes. 280–285 (2003)

  32. Khalil, H.K.: Nonlinear Systems, 3rd edn. Englewood Cliffs, Prentice Hall (2002)

    MATH  Google Scholar 

  33. Khalil, H., Esfandiari, F.: Semiglobal stabilization of a class of nonlinear systems using output feedback. IEEE Trans. Autom. Control 38(9), 1412–1415 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  34. Xie, X.J., Li, Z.J., Zhang, K.M.: Semi-global output feedback control for nonlinear systems with uncertain time-delay and output function. Int. J. Robust Nonlinear Control 27(15), 2549–2566 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  35. Ge, S.S., Hang, C.C., Lee, T.H., Zhang, T.: Stable Adaptive Neural Network Control. Kluwer, Boston (2002)

    Book  MATH  Google Scholar 

  36. Ge, S.S., Wang, C.: Adaptive neural control of uncertain MIMO nonlinear systems. IEEE Trans. Neural Netw. 15(3), 674–692 (2004)

    Article  Google Scholar 

  37. Benabdallah, A., Ellouze, I., Hammami, M.: Practical stability of nonlinear time-varying cascade systems. J. Dynam. Control Syst. 15(1), 45–62 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  38. Viet, T.D., Doan, P.T., Hung, N., Kim, H.K., Kim, S.B.: Tracking control of a three-wheeled omnidirectional mobile manipulator system with disturbance and friction. J. Mech. Sci. Technol. 26(7), 2197–2211 (2012)

    Article  Google Scholar 

  39. Ren, C., Yi, S., Ma, S.: Passivity-based control of an omnidirectional mobile robot. Robot. Biomim. 3(1), 1–9 (2016)

    Article  Google Scholar 

  40. Tsai, C. C. Kuo, C. Z. Chan, C. C. and Wang, X. C.: Global path planning and navigation of an omnidirectional mecanum mobile robot. In: Proceedings of 2013 CACS international automatic control conference. 85–90 (2013)

  41. Khasminskii, R.: Stochastic Stability of Differential Equations. Springer, Berlin (2011)

  42. Hu, Q.X., Zhang, D.F., Wu, Z.J.: Trajectory planning and tracking control for 6-DOF Stanford manipulator based on adaptive sliding mode multi-stage switching control. Int. J. Robust Nonlinear Control 31(14), 6602–6625 (2021)

    Article  MathSciNet  Google Scholar 

  43. Huang, H.C., Tsai, C.C., Lin, S.C.: Adaptive polar-space motion control for embedded omnidirectional mobile robots with parameter variations and uncertainties. J. Intell. Rob. Syst. 62(1), 81–102 (2011)

  44. Lin, L.C., Shih, H.Y.: Modeling and adaptive control of an omni-mecanum-wheeled robot. Intell. Control. Autom. 2013(2), 166–179 (2013)

    Article  Google Scholar 

  45. Campion, G., Bastin, G., D’Andrea-Novel, B.: Structural properties and classification of kinematic and dynamic models of wheeled mobile robots. IEEE Trans. Robot. Autom. 12(1), 47–62 (1996)

    Article  Google Scholar 

  46. Cui, M.Y., Wu, Z.J.: Trajectory tracking of flexible joint manipulators actuated by DC-motors under random disturbances. J. Frank. Inst. 356(16), 9330–9343 (2019)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundations of China (No. 62073275).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhaojing Wu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Code availability:

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, C., Wu, Z. Adaptive robust maneuvering control for nonlinear systems via dynamic surface technique. Nonlinear Dyn 111, 8369–8381 (2023). https://doi.org/10.1007/s11071-023-08289-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-08289-x

Keywords

Mathematics Subject Classification

Navigation