Skip to main content
Log in

Highly computationally efficient parameter estimation algorithms for a class of nonlinear multivariable systems by utilizing the state estimates

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper investigates the parameter estimation issue for an input nonlinear multivariable state-space system. First, the canonical form of the input nonlinear multivariable state-space system is obtained through the linear transformation and the over-parameterization identification model of the considered system is derived. Second, by cutting down the redundant parameter estimates and extracting the unique parameter estimates from the parameter estimation vector in the least-squares identification method, we present an over-parameterization-based partially coupled average recursive extended least-squares parameter estimation algorithm to estimate the parameters. As for the unknown states in the parameter estimation algorithm, a new state estimator is designed to generate the state estimates. Third, in order to improve the computational efficiency of the parameter estimation algorithm, an over-parameterization-based multi-stage partially coupled average recursive extended least-squares algorithm is proposed. Finally, the computational efficiency analysis and the simulation examples are given to verify the effectiveness of the proposed algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Qian, N.J., Chang, G.B., Gao, J.X.: Smoothing for continuous dynamical state space models with sampled system coefficients based on sparse kernel learning. Nonlinear Dyn. 100, 3597–3610 (2020)

    Google Scholar 

  2. Li, M.H., Liu, X.M.: Maximum likelihood least squares based iterative estimation for a class of bilinear systems using the data filtering technique. Int. J. Control Autom. Syst. 18(6), 1581–1592 (2020)

    Google Scholar 

  3. Park, J.M., Park, P.G.: A less conservative stability criterion for sampled-datasystem via a fractional-delayed state and its state-space model. Int. J. Robust Nonlinear Control 29(9), 2561–2572 (2019)

    MATH  Google Scholar 

  4. Xu, L.: Separable multi-innovation Newton iterative modeling algorithm for multi-frequency signals based on the sliding measurement window. Circuits Syst. Signal Process. 41(2), 805–830 (2022)

    MathSciNet  Google Scholar 

  5. Xu, L.: Separable Newton recursive estimation method through system responses based on dynamically discrete measurements with increasing data length. Int. J. Control Autom. Syst. 20(2), 432–443 (2022)

    MathSciNet  Google Scholar 

  6. Ramos, J.A., Mercère, G.: A stochastic subspace system identification algorithm for state-space systems in the general 2-D Roesser model form. Int. J. Control 91(12), 2743–2771 (2018)

    MathSciNet  MATH  Google Scholar 

  7. Liu, X., Yang, X.Q., Zhu, P.B., et al.: Robust identification of nonlinear time-delay system in state-space form. J. Frankl. Inst. 356(16), 9953–9971 (2019)

    MathSciNet  MATH  Google Scholar 

  8. Hou, J., Chen, F.W., Li, P.H., et al.: Fixed point iteration-based subspace identification of Hammerstein state-space models. IET Control Theory Appl. 13(8), 1173–1181 (2019)

    MathSciNet  MATH  Google Scholar 

  9. Rahmani, M.R., Farrokhi, M.: Fractional-order Hammerstein state-space modeling of nonlinear dynamic systems from input-output measurements. ISA Trans. 96, 177–184 (2020)

    Google Scholar 

  10. Hammar, K., Djamah, T., Bettayeb, M.: Identification of fractional Hammerstein system with application to a heating process. Nonlinear Dyn. 96, 2613–2626 (2019)

    MATH  Google Scholar 

  11. Ding, J.L., Zhang, W.H.: Finite-time adaptive control for nonlinear systems with uncertain parameters based on the command filters. Int. J. Adapt. Control Signal Process. 35(9), 1754–1767 (2021)

    MathSciNet  Google Scholar 

  12. Li, M.H., Liu, X.M.: The least squares based iterative algorithms for parameter estimation of a bilinear system with autoregressive noise using the data filtering technique. Signal Process. 147, 23–34 (2018)

    Google Scholar 

  13. Fan, Y.M., Liu, X.M.: Two-stage auxiliary model gradient-based iterative algorithm for the input nonlinear controlled autoregressive system with variable-gain nonlinearity. Int. J. Robust Nonlinear Control 30(14), 5492–5509 (2020)

    MathSciNet  MATH  Google Scholar 

  14. Gu, Y., Zhu, Q., Nouri, H.: Identification and U-control of a state-space system with time-delay. Int. J. Adapt. Control Signal Process 36(1), 138–154 (2022)

  15. Ji, Y., Zhang, C., Kang, Z., et al.: Parameter estimation for block-oriented nonlinear systems using the key term separation. Int. J. Robust Nonlinear Control 30(9), 3727–3752 (2020)

    MathSciNet  MATH  Google Scholar 

  16. Liu, X.M., Fan, Y.M.: Maximum likelihood extended gradient-based estimation algorithms for the input nonlinear controlled autoregressive moving average system with variable-gain nonlinearity. Int. J. Robust Nonlinear Control 31(9), 4017–4036 (2021)

    MathSciNet  Google Scholar 

  17. Ji, Y., Jiang, X.K., Wan, L.J.: Hierarchical least squares parameter estimation algorithm for two-input Hammerstein finite impulse response systems. J. Frankl. Inst. 357(8), 5019–5032 (2020)

    MathSciNet  MATH  Google Scholar 

  18. Ding, J., Cao, Z.X., Chen, J.Z., et al.: Weighted parameter estimation for Hammerstein nonlinear ARX systems. Circuits Syst. Signal Process. 39(4), 2178–2192 (2020)

    Google Scholar 

  19. Xu, L., Xiong, W.L., Alsaedi, A., et al.: Hierarchical parameter estimation for the frequency response based on the dynamical window data. Int. J. Control Autom. Syst. 16(4), 1756–1764 (2018)

    Google Scholar 

  20. Xu, L., Song, G.L.: A recursive parameter estimation algorithm for modeling signals with multi-frequencies. Circuits Syst. Signal Process. 39(8), 4198–4224 (2020)

    MATH  Google Scholar 

  21. Ji, Y., Kang, Z., Zhang, C.: Two-stage gradient-based recursive estimation for nonlinear models by using the data filtering. Int. J. Control Autom. Syst. 19(8), 2706–2715 (2021)

    Google Scholar 

  22. Wang, J.W., Ji, Y., Zhang, C.: Iterative parameter and order identification for fractional-order nonlinear finite impulse response systems using the key term separation. Int. J. Adapt. Control Signal Process. 35(8), 1562–1577 (2021)

    MathSciNet  Google Scholar 

  23. Wang, J., Ji, Y., Zhang, X.: Two-stage gradient-based iterative algorithms for the fractional-order nonlinear systems by using the hierarchical identification principle. Int. J. Adapt. Control Signal Process. 36(7), 1778–1796 (2022)

    MathSciNet  Google Scholar 

  24. Yang, Y.R., Zheng, Y., Li, S.Y., et al.: Economic model predictive control for achieving offset-free operation performance of industrial constrained systems. J. Process Control 80, 103–116 (2019)

    Google Scholar 

  25. Luo, H., Zhao, H., Yin, S.: Data-driven design of fog-computing-aided process monitoring system for large-scale industrial processes. IEEE Trans. Industr. Inf. 14(10), 4631–4641 (2018)

    Google Scholar 

  26. Hu, X., Wei, X.J., Zhang, H.F., et al.: Global asymptotic regulation control for MIMO mechanical systems with unknown model parameters and disturbances. Nonlinear Dyn. 95, 2293–2305 (2019)

    MATH  Google Scholar 

  27. Sinquin, B., Verhaegen, M.: K4SID: Large-scale subspace identification with Kronecker modeling. IEEE Trans. Autom. Control 64(3), 960–975 (2019)

    MathSciNet  MATH  Google Scholar 

  28. Rizvi, S.Z., Velni, J.M., Abbasi, F., et al.: State-space LPV model identification using kernelized machine learning. Automatica 88, 38–47 (2018)

    MathSciNet  MATH  Google Scholar 

  29. Chen, G.Y., Gan, M., Chen, C.L.P., et al.: A regularized variable projection algorithm for separable nonlinear least squares problems. IEEE Trans. Autom. Control 64(2), 526–537 (2019)

    MathSciNet  MATH  Google Scholar 

  30. Li, M.H., Liu, X.M.: Maximum likelihood hierarchical least squares-based iterative identification for dual-rate stochastic systems. Int. J. Adapt. Control Signal Process. 35(2), 240–261 (2021)

    MathSciNet  Google Scholar 

  31. Li, M., Liu, X.: Iterative identification methods for a class of bilinear systems by using the particle filtering technique. Int. J. Adapt. Control Signal Process. 35(10), 2056–2074 (2021)

    MathSciNet  Google Scholar 

  32. Cui, T.: Recursive parameter and state estimation methods for observability canonical state-space models exploiting the hierarchical identification principle. IET Control Theory Appl. 13(16), 2538–2545 (2019)

    MathSciNet  Google Scholar 

  33. Cui, T.: Joint multi-innovation recursive extended least squares parameter and state estimation for a class of state-space systems. Int. J. Control Autom. Syst. 18(6), 1412–1424 (2020)

    Google Scholar 

  34. Xu, L., Chen, L., Xiong, W.L.: Parameter estimation and controller design for dynamic systems from the step responses based on the Newton iteration. Nonlinear Dyn. 79(3), 2155–2163 (2015)

    MathSciNet  Google Scholar 

  35. Xu, L.: The damping iterative parameter identification method for dynamical systems based on the sine signal measurement. Signal Process. 120, 660–667 (2016)

    Google Scholar 

  36. Wang, Y., Tang, S.: Parameter estimation for nonlinear Volterra systems by using the multi-innovation identification theory and tensor decomposition. J. Frankl. Inst. 359(2), 1782–1802 (2022)

    MathSciNet  MATH  Google Scholar 

  37. Wang, Y., Yang, L.: An efficient recursive identification algorithm for multilinear systems based on tensor decomposition. Int. J. Robust Nonlinear Control 31(11), 7920–7936 (2021)

    MathSciNet  Google Scholar 

  38. Wang, Y., Tang, S., Deng, M.: Modeling nonlinear systems using the tensor network B-spline and the multi-innovation identification theory. Int. J. Robust Nonlinear Control 32(13), 7304–7318 (2022)

    MathSciNet  Google Scholar 

  39. Zhou, Y.H., Zhang, X.: Partially-coupled nonlinear parameter optimization algorithm for a class of multivariate hybrid models. Appl. Math. Comput. 414, 126663 (2022)

    MathSciNet  MATH  Google Scholar 

  40. Hou, J., Chen, F.W.: Gray-box parsimonious subspace identification of Hammerstein-type systems. IEEE Trans. Ind. Electron. 68(10), 9941–9951 (2021)

    Google Scholar 

  41. Hou, J., Su, H., Yu, C., Chen, F., Li, P.: Bias-correction errors-in-variables Hammerstein model identification. IEEE Trans. Ind. Electron. (2022). https://doi.org/10.1109/TIE.2022.3199931

    Article  Google Scholar 

  42. Hou, J., Su, H., Yu, C., et al.: Consistent subspace identification of errors-in-variables Hammerstein systems. IEEE Trans. Syst. Man Cybern. Syst. (2022). https://doi.org/10.1109/TSMC.2022.3213809

    Article  Google Scholar 

  43. Zhou, Y.H.: Hierarchical estimation approach for RBF-AR models with regression weights based on the increasing data length. IEEE Trans. Circuits Syst. II Express Briefs 68(12), 3597–3601 (2021)

    Google Scholar 

  44. Zhang, X.: Optimal adaptive filtering algorithm by using the fractional-order derivative. IEEE Signal Process. Lett. 29, 399–403 (2022)

    Google Scholar 

  45. Zhao, Z., Zhou, Y., Wang, X., et al.: Water quality evolution mechanism modeling and health risk assessment based on stochastic hybrid dynamic systems. Expert Syst. Appl. 193, 116404 (2022)

    Google Scholar 

  46. Cui, T. Moving data window-based partially-coupled estimation approach for modeling a dynamical system involving unmeasurable states. ISA Trans. 128, 437–452 (2022)

  47. You, J.Y., Yu, C.P., Sun, J., Chen, J.: Generalized maximum entropy based identification of graphical ARMA models. Automatica 141, 110319 (2022)

    MathSciNet  MATH  Google Scholar 

  48. Yu, C., Li, Y., Fang, H., Chen, J.: System identification approach for inverse optimal control of finite-horizon linear quadratic regulators. Automatica 129, 109636 (2021)

    MathSciNet  MATH  Google Scholar 

  49. Bai, E.W.: An optimal two-stage identification algorithm for Hammerstein-Wiener nonlinear systems. Automatica 34(3), 333–338 (1998)

    MathSciNet  MATH  Google Scholar 

  50. Ji, Y., Kang, Z.: Three-stage forgetting factor stochastic gradient parameter estimation methods for a class of nonlinear systems. Int. J. Robust Nonlinear Control 31(3), 971–987 (2021)

    MathSciNet  Google Scholar 

  51. Ji, Y., Kang, Z., Liu, X.: The data filtering based multiple-stage Levenberg–Marquardt algorithm for Hammerstein nonlinear systems. Int. J. Robust Nonlinear Control 31(15), 7007–7025 (2021)

    MathSciNet  Google Scholar 

  52. Fan, Y., Liu, X.: Auxiliary model-based multi-innovation recursive identification algorithms for an input nonlinear controlled autoregressive moving average system with variable-gain nonlinearity. Int. J. Adapt. Control Signal Process 36(3), 521–540 (2022)

  53. Li, X.Y., Wu, B.Y. A kernel regression approach for identification of first order differential equations based on functional data. Appl. Math. Lett. 127, 107832 (2022)

  54. Li, J.M.: A novel nonlinear optimization method for fitting a noisy Gaussian activation function. Int. J. Adapt. Control Signal Process. 36(3), 690–707 (2022)

  55. Xu, L.: Decomposition strategy-based hierarchical least mean square algorithm for control systems from the impulse responses. Int. J. Syst. Sci. 52(9), 1806–1821 (2021)

    MathSciNet  MATH  Google Scholar 

  56. Li, M., Xu, G., Lai, Q., Chen, J.: A chaotic strategy-based quadratic opposition-based learning adaptive variable-speed whale optimization algorithm. Math. Comput. Simul. 193, 71–99 (2022)

    MathSciNet  MATH  Google Scholar 

  57. Xu, L., Chen, F.Y.: Hierarchical recursive signal modeling for multi-frequency signals based on discrete measured data. Int. J. Adapt. Control Signal Process. 35(5), 676–693 (2021)

    Google Scholar 

  58. Zhao, N., Wu, A., Pei, Y., et al.: Spatial-temporal aggregation graph convolution network for efficient mobile cellular traffic prediction. IEEE Commun. Lett. 26(3), 587–591 (2022)

    Google Scholar 

  59. Chen, Y., Zhang, C., Liu, C.Y., et al.: Atrial fibrillation detection using feedforward neural network. J. Med. Biolog. Eng. 42(1), 63–73 (2022)

    Google Scholar 

  60. Wang, J., Ding, C., Wu, M., et al.: Lightweight multiple scale-patch dehazing network for real-world hazy image. KSII Trans. Internet Inf. Syst. 15, 4420–4438 (2022)

    Google Scholar 

  61. Wang, Y., Yang, G., Li, S., et al.: Arrhythmia classification algorithm based on multi-head self-attention mechanism. Biomed. Signal Process. Control 79, 104206 (2023)

    Google Scholar 

  62. Lin, J., Li, Y., Yang, G.: FPGAN: Face de-identification method with generative adversarial networks for social robots. Neural Netw. 133, 132–147 (2021)

    Google Scholar 

  63. Yang, G., Chen, Z., Li, Y., Su, Z.: Rapid relocation method for mobile robot based on improved ORB-SLAM2 algorithm. Remote Sensing 11, 149 (2019)

    Google Scholar 

  64. Yin, C.C., Wen, Y.Z.: An extension of Paulsen-Gjessing’s risk model with stochastic return on investments. Insur Math Econom. 52(3), 469–476 (2013)

    MathSciNet  MATH  Google Scholar 

  65. Yin, C.C., Zhao, J.S.: Nonexponential asymptotics for the solutions of renewal equations, with applications. J. Appl. Probab. 43(3), 815–824 (2006)

    MathSciNet  MATH  Google Scholar 

  66. Yin, C.C., Yuen, K.C.: Optimality of the threshold dividend strategy for the compound Poisson model. Statist. Probab. Lett. 81(12), 1841–1846 (2011)

    MathSciNet  MATH  Google Scholar 

  67. Yin, C.C., Yuen, K.C.: Optimal dividend problems for a jump-diffusion model with capital injections and proportional transaction costs. J. Ind. Manag. Optim. 11(4), 1247–1262 (2015)

    MathSciNet  MATH  Google Scholar 

  68. Geng, F.Z., Wu, X.Y.: A novel kernel functions algorithm for solving impulsive boundary value problems. Appl. Math. Lett. 134, 108318 (2022)

    MathSciNet  MATH  Google Scholar 

  69. Wang, H., Fan, H., Pan, J.: A true three-scroll chaotic attractor coined. Discr. Contin. Dyn. Syst. Ser. B 27(5), 2891–2915 (2022)

    MathSciNet  MATH  Google Scholar 

  70. Xu, L.: Separable synchronous multi-innovation gradient-based iterative signal modeling from on-line measurements. IEEE Trans. Instrumentation and Measurement 71, 6501313 (2022)

    Google Scholar 

  71. Zhou, Y.H.: Modeling nonlinear processes using the radial basis function-based state-dependent autoregressive models. IEEE Signal Process. Lett. 27, 1600–1604 (2020)

    Google Scholar 

  72. Xu, L.: Auxiliary model multiinnovation stochastic gradient parameter estimation methods for nonlinear sandwich systems. Int. J. Robust Nonlinear Control 31(1), 148–165 (2021)

    MathSciNet  Google Scholar 

  73. Chen, G.Y., Gan, M., Chen, C., et al.: Basis function matrix-based flexible coefficient autoregressive models: A framework for time series and nonlinear system modeling. IEEE Trans. Cybern. 51(2), 614–623 (2021)

    Google Scholar 

  74. Gan, M., Chen, X.X., Chen, C.: Adaptive RBF-AR models based on multi-innovation least squares method. IEEE Signal Process. Lett. 26(8), 1182–1186 (2019)

    Google Scholar 

  75. Chen, G.Y., Gan, M., Chen, C.: Modified Gram-Schmidt method-based variable projection algorithm for separable nonlinear models. IEEE Trans. Neural Netw. Learn. Syst. 30(8), 2410–2418 (2019)

    MathSciNet  Google Scholar 

  76. Gan, M., Chen, C., Chen, G.Y., et al.: On some separated algorithms for separable nonlinear squares problems. IEEE Trans. Cybern. 48(10), 2866–2874 (2018)

    Google Scholar 

  77. Xiong, W., Jia, X., Yang, D., et al.: DP-LinkNet: A convolutional network for historical document image binarization. KSII Trans. Internet Inf. Syst. 15(5), 1778–1797 (2021)

    Google Scholar 

  78. Xu, C., Xu, H., Guan, Z., Ge, Y.: Observer-based dynamic event-triggered semi-global bipartite consensus of linear multi-agent systems with input saturation. IEEE Trans. Cybern. (2022). https://doi.org/10.1109/TCYB.2022.3164048

    Article  Google Scholar 

  79. Cao, Y., An, Y., Su, S., et al.: A statistical study of railway safety in China and Japan 1990–2020. Accidt. Anal. Prevent. 175, 106764 (2022)

    Google Scholar 

  80. Cao, Y., Yang, R., Ma, L., Wen, J.: Research on virtual coupled train control method based on GPC & VAPF. Chinese J. Electron. 31(5), 897–905 (2022)

    Google Scholar 

  81. Sun, Y., Cao, Y., Li, P.: Contactless fault diagnosis for railway point machines based on multi-scale fractional wavelet packet energy entropy and synchronous optimization strategy. IEEE Trans. Veh. Technol. 71(6), 5906–5914 (2022)

    Google Scholar 

  82. Cao, Y., Ji, Y., Sun, Y., Su, S.: The fault diagnosis of a switch machine based on deep random forest fusion. IEEE Intell. Transp. Syst. Mag. 15(1), 437–452 (2023)

  83. Wang, X., Su, S., Cao, Y., Wang, X.L.: Robust control for dynamic train regulation in fully automatic operation system under uncertain wireless transmissions. IEEE Trans. Intell. Transp. Syst. 23(11), 20721–20734 (2022)

  84. Cao, Y., Zhang, Z., Cheng, F., Su, S.: Trajectory optimization for high-speed trains via a mixed integer linear programming approach. IEEE Trans. Intell. Transp. Syst. 23(10), 17666–17676 (2022)

  85. Cui, T.: Kalman filtering based gradient estimation algorithms for observer canonical state-space systems with moving average noises. J. Frankl. Inst. 356(10), 5485–5502 (2019)

    MathSciNet  MATH  Google Scholar 

  86. Cao, Y., Sun, Y., Xie, G., et al.: A sound-based fault diagnosis method for railway point machines based on two-stage feature selection strategy and ensemble classifier. IEEE Trans. Intell. Transp. Syst. 23(8), 12074–12083 (2022)

  87. Cao, Y., Wen, J., Hobiny, A., et al.: Parameter-varying artificial potential field control of virtual coupling system with nonlinear dynamics. Fractals 30(2), 2240099 (2022)

  88. Cao, Y., Wen, J.K., Ma, L.C.: Tracking and collision avoidance of virtual coupling train control system. Alex. Eng. J. 60(2), 2115–2125 (2021)

    Google Scholar 

  89. Sun, Y., Cao, Y., Ma, C.: A fault diagnosis method for train plug doors via sound signals. IEEE Intell. Transp. Syst. Mag. 13(3), 107–117 (2021)

    Google Scholar 

  90. Sun, Y., Cao, Y., Xie, G., et al.: Sound based fault diagnosis for RPMs based on multi-scale fractional permutation entropy and two-scale algorithm. IEEE Trans. Veh. Technol. 70(11), 11184–11192 (2021)

    Google Scholar 

  91. Cao, Y., Ma, L., Xiao, S., et al.: Standard analysis for transfer delay in CTCS-3. Chinese J. Electron. 26(5), 1057–1063 (2017)

    Google Scholar 

  92. Su, S., Wang, X., Cao, Y., et al.: An energy-efficient train operation approach by integrating the metro timetabling and eco-driving. IEEE Trans. Intell. Transp. Syst. 21(10), 4252–4268 (2020)

    Google Scholar 

  93. Cao, Y., Wang, Z., Liu, F., et al.: Bio-inspired speed curve optimization and sliding mode tracking control for subway trains. IEEE Trans. Veh. Technol. 68(7), 6331–6342 (2019)

    Google Scholar 

  94. Cao, Y., Sun, Y.K., Xie, G., et al.: Fault diagnosis of train plug door based on a hybrid criterion for IMFs selection and fractional wavelet package energy entropy. IEEE Trans. Veh. Technol. 68(8), 7544–7551 (2019)

    Google Scholar 

  95. Su, S., She, J., Li, K., et al.: A nonlinear safety equilibrium spacing based model predictive control for virtually coupled train set over gradient terrains. IEEE Trans. Transp. Electr. 8(2), 2810–2824 (2022)

  96. Su, S., Tang, T., Xu, J., et al.: Design of running grades for energy-efficient train regulation: A case study for beijing yizhuang line. IEEE Intell. Transp. Syst. Mag. 13(2), 189–200 (2021)

  97. Xiong, J.X., Pan, J., Chen, G.Y., et al.: Sliding mode dual-channel disturbance rejection attitude control for a quadrotor. IEEE Trans. Ind. Electron. 69(10), 10489–10499 (2022)

    Google Scholar 

  98. Pan, J., Chen, Q., Xiong, J., Chen, G.: A novel quadruple boost nine level switched capacitor inverter. J. Electr. Eng. Technol. 8(1), 467–480 (2023)

  99. Lv, L., Wu, Z., Zhang, L., et al.: An edge-AI based forecasting approach for improving smart microgrid efficiency. IEEE Trans. Ind. Inf. 18(11), 7946–7954 (2022)

  100. Lv, L., Wu, Z., Zhang, J., et al.: A VMD and LSTM based hybrid model of load forecasting for power grid security. IEEE Trans. Ind. Inf. 18(9), 6474–6482 (2022)

    Google Scholar 

  101. Ji, Y., Kang, Z., Zhang, X., Xu, L.: Model recovery for multi-input signal-output nonlinear systems based on the compressed sensing recovery theory. J. Frankl. Inst. 359(5), 2317–2339 (2022)

  102. Kang, Z., Ji, Y., Liu, X.: Hierarchical recursive least squares algorithms for Hammerstein nonlinear autoregressive output-error systems. Int. J. Adapt. Control Signal Process. 35(11), 2276–2295 (2021)

    Google Scholar 

  103. Ma, P., Wang, L.: Filtering-based recursive least squares estimation approaches for multivariate equation-error systems by using the multiinnovation theory. Int. J. Adapt. Control Signal Process. 35(9), 1898–1915 (2021)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 61873111, 62273167).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Ding.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, T., Ding, F. Highly computationally efficient parameter estimation algorithms for a class of nonlinear multivariable systems by utilizing the state estimates. Nonlinear Dyn 111, 8477–8496 (2023). https://doi.org/10.1007/s11071-023-08259-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-08259-3

Keywords

Navigation