Skip to main content
Log in

Evolutionary games with two species and delayed reciprocity

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In the rich variety of biological interaction patterns, the state of an individual often does not depend solely on immediate factors but is significantly associated also with interactions or circumstances from the past. In evolutionary game theory with the focus on the evolution of cooperation, these phenomena frequently fall under the umbrella of delayed reciprocity. Especially in populations or systems where multiple species are considered there is significant asymmetry in the different types of interaction returns, but also in various delayed effects incurred by different species. With this motivation, this paper studies three different two-species evolutionary models: the intraspecific payoff delay model, the interspecific payoff delay model, and the all-payoff delay model. It is found that if the delay applies only to interspecific interactions, it only affects the convergence time of the cooperation rate but not the stability of the equilibrium points. In contrast, once the delay applies to intraspecific interactions, then the system transitions from asymptotic stability to oscillations around the equilibrium point as the time delay period increases. Lastly, increasing the delay value postpones convergence when the internal equilibrium point is asymptotically stable, and increases the amplitude when the system is oscillating.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Santos, F.C., Pinheiro, F.L., Lenaerts, T., Pacheco, J.M.: Role of diversity in the evolution of cooperation. J. Theor. Biol. 299, 88–96 (2012)

    MathSciNet  Google Scholar 

  2. Nowak, M.A.: Evolving cooperation. J. Theor. Biol. 299, 1–8 (2012)

    MathSciNet  MATH  Google Scholar 

  3. Rand, D.G., Nowak, M.A.: Human cooperation. Trends Cognit. Sci. 17, 413–425 (2013)

    Google Scholar 

  4. Pacheco, J.M., Vasconcelos, V.V., Santos, F.C.: Climate change governance, cooperation and self-organization. Phys. Life Rev. 11, 573–586 (2014)

    Google Scholar 

  5. Fu, F., Chen, X.: Leveraging statistical physics to improve understanding of cooperation in multiplex networks. New J. Phys. 19, 071002 (2017)

    MathSciNet  Google Scholar 

  6. Perc, M., Jordan, J.J., Rand, D.G., Wang, Z., Boccaletti, S., Szolnoki, A.: Statistical physics of human cooperation. Phys. Rep. 687, 1–51 (2017)

    MathSciNet  MATH  Google Scholar 

  7. Capraro, V., Perc, M.: Mathematical foundations of moral preferences. J. R. Soc. Interface 18, 20200880 (2021)

    Google Scholar 

  8. Han, T.A., Pereira, L.M., Lenaerts, T.: Avoiding or restricting defectors in public goods games? J. R. Soc. Interface 12, 20141203 (2015)

    Google Scholar 

  9. Nowak, M.A.: Five rules for the evolution of cooperation. Science 314, 1560–1563 (2006)

    Google Scholar 

  10. Nowak, M.A., Sigmund, K.: Evolution of indirect reciprocity by image scoring. Nature 393, 573–577 (1998)

    Google Scholar 

  11. Hilbe, C., Chatterjee, K., Nowak, M.A.: Partners and rivals in direct reciprocity. Nat. Human Behav. 2, 469–477 (2018)

    Google Scholar 

  12. Pacheco, J.M., Traulsen, A., Ohtsuki, H., Nowak, M.A.: Repeated games and direct reciprocity under active linking. J. Theor. Biol. 250, 723–731 (2008)

    MathSciNet  MATH  Google Scholar 

  13. Rand, D.G., Ohtsuki, H., Nowak, M.A.: Direct reciprocity with costly punishment: Generous tit-for-tat prevails. J. Theor. Biol. 256, 45–57 (2009)

    MathSciNet  MATH  Google Scholar 

  14. Nowak, M.A., Sigmund, K.: The dynamics of indirect reciprocity. J. Theor. Biol. 191, 561–574 (1998)

    Google Scholar 

  15. Leimar, O., Hammerstein, P.: Evolution of cooperation through indirect reciprocity. Proc. R. Soc. B 268, 745–753 (2001)

    Google Scholar 

  16. Milinski, M., Semmann, D., Krambeck, H.-J.: Donors to charity gain in both indirect reciprocity and political reputation. Proc. R. Soc. Lond. B 269, 881–883 (2002)

    Google Scholar 

  17. Hellmann, T., Staudigl, M.: Evolution of social networks. Eur. J. Operational Res. 234, 583–596 (2014)

    MathSciNet  MATH  Google Scholar 

  18. Wang, S., Chen, X., Xiao, Z., Szolnoki, A.: Decentralized incentives for general well-being in networked public goods game. Appl. Math. Comput. 431, 127308 (2022)

    MathSciNet  MATH  Google Scholar 

  19. Fehr, E.: Don’t lose your reputation. Nature 432, 449–450 (2004)

    Google Scholar 

  20. Brown, J.L.: Communal feeding of nestlings in the Mexican jay (Aphelocoma ultramarina): interflock comparisons. Anim. Behav. 20, 395–403 (1972)

    Google Scholar 

  21. Wiley, R.H., Rabenold, K.N.: The evolution of cooperative breeding by delayed reciprocity and queuing for favorable social positions. Evolution, 609–621 (1984)

  22. Ma, J., Qin, H., Song, X., Chu, R.: Pattern selection in neuronal network driven by electric autapses with diversity in time delays. Int. J. Mod. Phys. B 29, 1450239 (2015)

    Google Scholar 

  23. Szolnoki, A., Perc, M.: Decelerated invasion and waning-moon patterns in public goods games with delayed distribution. Phys. Rev. E 87, 054801 (2013)

    Google Scholar 

  24. Huang, C., Li, Z., Ding, D., Cao, J.: Bifurcation analysis in a delayed fractional neural network involving self-connection. Neurocomputing 314, 186–197 (2018)

    Google Scholar 

  25. Li, Z., Zhang, W., Huang, C., Zhou, J., et al.: Bifurcation for a fractional-order Lotka-Volterra predator-prey model with delay feedback control. AIMS Math. 6, 675–687 (2021)

    MathSciNet  MATH  Google Scholar 

  26. Anh, H.T., Traulsen, A., Gokhale, C.S.: On equilibrium properties of evolutionary multi-player games with random payoff matrices. Theor. Popul, Biol (2012)

    MATH  Google Scholar 

  27. Tao, Y., Wang, Z.: Effect of time delay and evolutionarily stable strategy. J. Theor. Biol. 187, 111–116 (1997)

    Google Scholar 

  28. Łopusza ński, K., Mi ękisz, J.: Random walks with asymmetric time delays. Phys. Rev. E 105, 064131 (2022)

  29. Ben-Khalifa, N., El-Azouzi, R., Hayel, Y.: Random time delays in evolutionary game dynamics. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 3840–3845 (2015). IEEE

  30. Perc, M., Szolnoki, A.: Coevolutionary games - a mini review. BioSystems 99, 109–125 (2010)

    Google Scholar 

  31. Li, K., Szolnoki, A., Cong, R., Wang, L.: The coevolution of overconfidence and bluffing in the resource competition game. Sci. Rep. 6, 21104 (2016)

    Google Scholar 

  32. Shen, C., Chu, C., Shi, L., Jusup, M., Perc, M., Wang, Z.: Coevolutionary resolution of the public goods dilemma in interdependent structured populations. EPL 124, 48003 (2018)

    Google Scholar 

  33. Shen, C., Chu, C., Shi, L., Perc, M., Wang, Z.: Aspiration-based coevolution of link weight promotes cooperation in the spatial prisoner’s dilemma game. R. Soc. Open Sci. 5, 180199 (2018)

    Google Scholar 

  34. Weitz, J.S., Eksin, C., Paarporn, K., Brown, S.P., Ratcliff, W.C.: An oscillating tragedy of the commons in replicator dynamics with game-environment feedback. Proc. Natl. Acad. Sci. USA 113, 7518–7525 (2016)

    Google Scholar 

  35. Hilbe, C., Šimsa, Š, Chatterjee, K., Nowak, M.A.: Evolution of cooperation in stochastic games. Nature 559, 246–249 (2018)

    Google Scholar 

  36. Tilman, A.R., Plotkin, J.B., Akçay, E.: Evolutionary games with environmental feedbacks. Nat. Commun. 11, 1–11 (2020)

    Google Scholar 

  37. Fang, Y., Perc, M., Zhang, H.: A game theoretical model for the stimulation of public cooperation in environmental collaborative governance. R. Soc. Open Sci. 9, 221148 (2022)

    Google Scholar 

  38. Roy, S., Chowdhury, S.N., Mali, P.C., Perc, M., Ghosh, D.: Eco-evolutionary dynamics of multigames with mutations. PLoS ONE 17, 0272719 (2022)

    Google Scholar 

  39. Yan, F., Chen, X., Qiu, Z., Szolnoki, A.: Cooperator driven oscillation in a time-delayed feedback-evolving game. New J. Phys. 23, 053017 (2021)

    MathSciNet  Google Scholar 

  40. Kawano, Y., Gong, L., Anderson, B.D., Cao, M.: Evolutionary dynamics of two communities under environmental feedback. IEEE Control Syst. Lett. 3, 254–259 (2018)

    MathSciNet  Google Scholar 

  41. Khalifa, N.B., El-Azouzi, R., Hayel, Y.: Delayed evolutionary game dynamics with non-uniform interactions in two communities. In: 53rd IEEE Conference on Decision and Control, pp. 3809–3814 (2014). IEEE

  42. Zhong, C., Yang, H., Liu, Z., Wu, J.: Stability of replicator dynamics with bounded continuously distributed time delay. Mathematics 8, 431 (2020)

    Google Scholar 

  43. Cheong, K.H., Koh, J.M., Jones, M.C.: Paradoxical survival: examining the parrondo effect across biology. Bioessays 41, 1900027 (2019)

    Google Scholar 

  44. Javarone, M.A.: The host-pathogen game: an evolutionary approach to biological competitions. Front. Phys. 6, 94 (2018)

    Google Scholar 

  45. Gupta, V., Mittal, M., Mittal, V.: Chaos theory and artfa: emerging tools for interpreting ecg signals to diagnose cardiac arrhythmias. Wireless. Pers. Commun. 118, 3615–3646 (2021)

    Google Scholar 

  46. Gupta, V., Mittal, M., Mittal, V.: Chaos theory: an emerging tool for arrhythmia detection. Sensing Imag. 21(1), 1–22 (2020)

    Google Scholar 

  47. Gupta, V., Mittal, M., Mittal, V.: R-peak detection based chaos analysis of ecg signal. Analog. Integr. Circ S. 102(3), 479–490 (2020)

    Google Scholar 

  48. Arnold, K.E., Owens, I.P.: Cooperative breeding in birds: a comparative test of the life history hypothesis. Proc. R. Soc. B 265, 739–745 (1998)

  49. Riehl, C.: Evolutionary routes to non-kin cooperative breeding in birds. Proc. R. Soc. B 280, 20132245 (2013)

    Google Scholar 

  50. Javarone, M.A., Battiston, F.: The role of noise in the spatial public goods game. J. Stat. Mech. 2016, 073404 (2016)

    Google Scholar 

  51. Duong, M.H., et al.: Analysis of the expected density of internal equilibria in random evolutionary multi-player multi-strategy games. J. Math. Biol. 73, 1727–1760 (2016)

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (Grant Nos. 11931015 and 12271471) to L.S. We also acknowledge support from (i) the China Scholarship Council (scholarship no. 202108530156) to K.H., (ii) the Yunnan Provincial Department of Education Science Research Fund Project (Grant No. 2022Y489), and the Key Laboratory of Complex Dynamics System and Application Analysis of Department of Education of Yunnan Province to Z.L., (iii) the Slovenian Research Agency (Javna agencija za raziskovalno dejavnost RS) (Grant Nos. P1-0403 and J1-2457) to M.P..

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lei Shi or Matjaž Perc.

Ethics declarations

Competing interest

The authors declare that they have no competing interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, K., Li, Z., Shi, L. et al. Evolutionary games with two species and delayed reciprocity. Nonlinear Dyn 111, 7899–7910 (2023). https://doi.org/10.1007/s11071-023-08231-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-08231-1

Keywords

Navigation