Skip to main content
Log in

Optical soliton resonances and soliton molecules for the Lakshmanan–Porsezian–Daniel system in nonlinear optics

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Soliton resonances and soliton molecules play a vital role to generate stable high-energy waves in nonlinear system. Meanwhile, higher-order dispersions and higher-order nonlinearity effects are often introduced in optical models because new optical propagation media have constantly been developed. This article’s motivation is to explore the optical soliton resonances and soliton molecules for the Lakshmanan–Porsezian–Daniel system governed by a four-order nonlinear Schrödinger equation arising in nonlinear optics. Via applying the Darboux transformation method, we obtained the system’s analytical multi-soliton solutions. Then, through managing the spectrum parameters and initial phase parameters, novel soliton resonances and soliton molecules are discovered for the first time to the system. Our study reveals a few of significant properties of the soliton resonances and soliton molecules for the system: (i) The formation mechanism from local soliton resonances to soliton molecules is discovered. The soliton molecules can be established as a limit of local soliton resonances; (ii) the system energy carried by the soliton will obviously increase as local soliton resonances and soliton molecules occur; (iii) the spatiotemporal patterns of soliton molecules will be becoming more complex as the order of soliton solutions increases; (iv) the wave density of soliton molecules will grow with the increase in the weight coefficient of higher-order dispersion and higher-order nonlinearity. These new results indicate that the Lakshmanan–Porsezian–Daniel system may not only generate higher-energy solitons, but also carry richer optical information.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Data sharing does not apply to this article as no data sets were generated or analyzed during the current study.

References

  1. Talarposhti, R.A., Jalili, P., Rezazadeh, H., Jalili, B., Ganji, D.D., Adel, W., Bekir, A.: Optical soliton solutions to the (2+1)-dimensional Kundu–Mukherjee–Naskar equation. Int. J. Mod. Phys. B 34, 2050102 (2020)

    MathSciNet  MATH  Google Scholar 

  2. Jalili, B., Sadighi, S., Jalili, P., Ganji, D.D.: Characteristics of ferrofluid flow over a stretching sheet with suction and injection. Case Stud. Therm. Eng. 14, 100470 (2019)

    Google Scholar 

  3. Jalili, B., Jalili, P., Sadighi, S., Ganji, D.D.: Effect of magnetic and boundary parameters on flow characteristics analysis of micropolar ferrofluid through the shrinking sheet with effective thermal conductivity. Chin. J. Phys. 71, 136–150 (2021)

    MathSciNet  Google Scholar 

  4. Jalili, B., Jalili, P., Shateri, A., Ganji, D.D.: Rigid plate submerged in a Newtonian fluid and fractional differential equation problems via Caputo fractional derivative. Part. Differ. Equ. Appl. Math. 6, 100452 (2022)

    Google Scholar 

  5. Strecker, K.E., Partridge, G.B., Truscott, A.G., Hulet, R.G.: Formation and propagation of matter-wave soliton trains. Nature 417, 150–153 (2002)

    Google Scholar 

  6. Shadrivov, I.V., Sukhorukov, A.A., Kivshar, Y.S., Zharov, A.A., Boardman, A.D., Egan, P.: Nonlinear surface waves in left-handed materials. Phys. Rev. E 69, 016617 (2004)

    MathSciNet  Google Scholar 

  7. Lederer, F., Stegeman, G.I., Christodoulides, D.N., Assanto, G., Segev, M., Silberberg, Y.: Discrete solitons in optics Phys. Rep.-Rev. Sec. Phys. Lett. 463, 1–126 (2008)

    Google Scholar 

  8. Ma, Y.L., Wazwaz, A.M., Li, B.Q.: New extended Kadomtsev–Petviashvili equation: multiple soliton solutions, breather, lump and interaction solutions. Nonlinear Dyn. 104, 1581–1594 (2021)

    Google Scholar 

  9. Ma, Y.L., Li, B.Q.: Bifurcation solitons and breathers for the nonlocal Boussinesq equations. Appl. Math. Lett. 124, 107677 (2022)

    MathSciNet  MATH  Google Scholar 

  10. Li, B.Q., Wazwaz, A.M., Ma, Y.L.: Two new types of nonlocal Boussinesq equations in water waves: bright and dark soliton solutions. Chin. J. Phys. 77, 1782–1788 (2022)

    MathSciNet  Google Scholar 

  11. Li, B.Q., Ma, Y.L.: The complex short pulse equation: multi-folded rogue waves and phase transition. Appl. Math. Lett. 135, 108399 (2023)

    MATH  Google Scholar 

  12. Ma, Y.L., Li, B.Q.: Doubly periodic waves, bright and dark solitons for a coupled monomode step-index optical fiber system. Opt. Quantum Electron. 50, 443 (2018)

    Google Scholar 

  13. Li, B.Q., Ma, Y.L.: Rogue waves for the optical fiber system with variable coefficients. Optik 158, 177–184 (2018)

    Google Scholar 

  14. Guan, W.Y., Li, B.Q.: Mixed structures of optical breather and rogue wave for a variable coefficient inhomogeneous fiber system. Opt. Quant. Electron. 51, 352 (2019)

    Google Scholar 

  15. Wang, L., Luan, Z.T., Zhou, Q., Biswas, A., Alzahrani, A.K., Liu, W.J.: Bright soliton solutions of the (2+1)-dimensional generalized coupled nonlinear Schrodinger equation with the four-wave mixing term. Nonlinear Dyn. 104, 2613–2620 (2021)

    Google Scholar 

  16. Zhu, Y., Yang, J., Li, J.T., Hu, L.W., Zhou, Q.: Interaction properties of double-hump solitons in the dispersion decreasing fiber. Nonlinear Dyn. 109, 1047–1052 (2022)

    Google Scholar 

  17. Agrawal, G.P.: Nonlinear Fiber Optics, 6th edn. Elsevier Inc., Amsterdam (2019)

    MATH  Google Scholar 

  18. Ahsan, A.S., Agrawal, G.R.: Spatio-temporal enhancement of Raman-induced frequency shifts in graded-index multimode fibers. Opt. Lett. 44, 2637–2640 (2019)

    Google Scholar 

  19. Oktem, B., Ulgudur, C., Ilday, F.O.: Soliton-similariton fibre laser. Nat. Photonics 4, 307–311 (2010)

    Google Scholar 

  20. Rotschild, C., Alfassi, B., Cohen, O., Segev, M.: Long-range interactions between optical solitons. Nat. Phys. 2, 769–774 (2006)

    Google Scholar 

  21. Yang, C.Y., Li, W.Y., Yu, W.T., Liu, M.L., Zhang, Y.J., Ma, G.L., Lei, M., Liu, W.J.: Amplification, reshaping, fission and annihilation of optical solitons in dispersion–decreasing fiber. Nonlinear Dyn. 92, 203–213 (2018)

    MATH  Google Scholar 

  22. Zhou, Q., Luan, Z.T., Zeng, Z.L., Zhong, Y.: Effective amplification of optical solitons in high power transmission systems. Nonlinear Dyn. 109, 3083–3089 (2022)

    Google Scholar 

  23. Li, B.Q.: Optical rogue wave structures and phase transitions in a light guide fiber system doped with two-level resonant atoms. Optik 253, 168541 (2022)

    Google Scholar 

  24. Sun, J.Z., Li, B.Q., Ma, Y.L.: Phase complementarity and magnification effect of optical pump wave and Stokes wave in a transient stimulated Raman scattering system. Optik 269, 169869 (2022)

    Google Scholar 

  25. Kopidakis, G., Aubry, S., Tsironis, G.P.: Targeted energy transfer through discrete breathers in nonlinear systems. Phys. Rev. Lett. 87, 165501 (2001)

    Google Scholar 

  26. Chang, W., Ankiewicz, A., Soto-Crespo, J.M., Akhmediev, N.: Dissipative soliton resonances. Phys. Rev. A 78, 023830 (2008)

    Google Scholar 

  27. Wu, X., Tang, D.Y., Zhang, H., Zhao, L.M.: Dissipative soliton resonance in an all-normal-dispersion erbium-doped fiber laser. Opt. Express 17, 5580–5584 (2009)

    Google Scholar 

  28. Duan, L.N., Liu, X.M., Mao, D., Wang, L.R., Wang, G.X.: Experimental observation of dissipative soliton resonance in an anomalous-dispersion fiber laser. Opt. Express 20, 265–270 (2012)

    Google Scholar 

  29. Liu, C.Y., Wu, Q.C., Yao, Y., Wu, C.H., Gan, Y.P., Fu, Y.P., Yang, Y.F., Tian, J.J., Xu, K.: Dissipative-Soliton-Resonance generation in anomalous-dispersion fiber lasers based on spectral filtering effect. Optik 224, 165387 (2020)

    Google Scholar 

  30. Tang, D.Y., Man, W.S., Tam, H.Y., Drummond, P.D.: Observation of bound states of solitons in a passively mode-locked fiber laser. Phys. Rev. A 64, 033814 (2001)

    Google Scholar 

  31. Nikolov, N.I., Neshev, D., Krolikowski, W., Bang, O., Rasmussen, J.J., Christiansen, P.L.: Attraction of nonlocal dark optical solitons. Opt. Lett. 29, 286–288 (2004)

    Google Scholar 

  32. Herink, G., Kurtz, F., Jalali, B., Solli, D.R., Ropers, C.: Real-time spectral interferometry probes the internal dynamics of femtosecond soliton molecules. Science 356, 50–53 (2017)

    Google Scholar 

  33. Stratmann, M., Pagel, T., Mitschke, F.: Experimental observation of temporal soliton molecules. Phys. Rev. Lett 95, 143902 (2005)

    Google Scholar 

  34. Grelu, P., Akhmediev, N.: Dissipative solitons for mode-locked lasers. Nat. Photonics 6, 84–92 (2012)

    Google Scholar 

  35. Liu, X.M., Yao, X.K., Cui, Y.D.: Real-time observation of the buildup of soliton molecules. Phys. Rev. Lett. 121, 023905 (2018)

    Google Scholar 

  36. Liu, X.Y., Zhang, H.X., Liu, W.J.: The dynamic characteristics of pure-quartic solitons and soliton molecules. Appl. Math. Model. 102, 305–312 (2022)

    MathSciNet  Google Scholar 

  37. Li, B.Q., Ma, Y.L.: Soliton resonances and soliton molecules of pump wave and Stokes wave for a transient stimulated Raman scattering system in optics. Eur. Phys. J. Plus 137, 1227 (2022)

    Google Scholar 

  38. Azzouzi, F., Triki, H., Mezghiche, K., El Akrmi, A.: Solitary wave solutions for high dispersive cubic-quintic nonlinear Schrödinger equation. Chaos Soliton Fract. 39, 1304–1307 (2009)

    MATH  Google Scholar 

  39. Choudhuri, A., Porsezian, K.: Impact of dispersion and non-Kerr nonlinearity on the modulational instability of the higher-order nonlinear Schrödinger equation. Phys. Rev. A 85, 033820 (2012)

    Google Scholar 

  40. Eskandar, S., Hoseini, S.M.: Weak interaction for higher-order nonlinear Schrodinger equation: an application of soliton perturbation. Commun. Nonlinear Sci. Numer. Simul. 45, 55–65 (2017)

    MathSciNet  MATH  Google Scholar 

  41. Ma, Y.L.: Interaction and energy transition between the breather and rogue wave for a generalized nonlinear Schrödinger system with two higher-order dispersion operators in optical fibers. Nonlinear Dyn. 97, 95–105 (2019)

    MATH  Google Scholar 

  42. Guan, W.Y., Li, B.Q.: New observation on the breather for a generalized nonlinear Schrödinger system with two higher-order dispersion operators in inhomogeneous optical fiber. Optik 181, 853–861 (2019)

    Google Scholar 

  43. Nair, A.A., Rajan, M.S.M., Jayaraju, M., Natarajan, V.: Impact of fourth order dispersion on modulational instabilities in asymmetrical three -core optical fiber. Optik 215, 164758 (2020)

    Google Scholar 

  44. Zhang, Y.B., Wang, L., Zhang, P., Luo, H.T., Shi, W.L., Wang, X.: The nonlinear wave solutions and parameters discovery of the Lakshmanan–Porsezian–Daniel based on deep learning. Chaos Solitons Fractal 159, 112155 (2022)

    MathSciNet  MATH  Google Scholar 

  45. Lakshmanan, M., Porsezian, K., Daniel, M.: Effect of discreteness on the continuum limit of the Heisenberg spin chain. Phys. Lett. A 133, 483–488 (1988)

    Google Scholar 

  46. Porsezian, K., Daniel, M., Lakshmanan, M.: On the integrability aspects of the one-dimensional classical continuum isotropic Heisenberg spin chain. J. Math. Phys. 33, 1807–1816 (1992)

    MathSciNet  MATH  Google Scholar 

  47. Porsezian, K.: Completely integrable nonlinear Schrödinger type equations on moving space curves. Phys. Rev. E 55, 3785–3789 (1997)

    MathSciNet  Google Scholar 

  48. Ankiewicz, A., Akhmediev, N.: Higher-order integrable evolution equation and its soliton solutions. Phys. Lett. A 378, 358–361 (2014)

    MathSciNet  MATH  Google Scholar 

  49. Rezazadeh, H., Mirzazadeh, M., Mirhosseini-Alizamini, S.M., Neirameh, A., Eslami, M., Zhou, Q.: Optical solitons of Lakshmanan–Porsezian–Daniel model with a couple of nonlinearities. Optik 164, 414–423 (2018)

    Google Scholar 

  50. Biswas, A., Ekici, M., Sonmezoglu, A., Triki, H., Majid, F.B., Zhou, Q., Moshokoa, S.P., Mirzazadeh, M., Belic, M.: Optical solitons with Lakshmanan–Porsezian–Daniel model using a couple of integration schemes. Optik 158, 705–711 (2018)

    Google Scholar 

  51. Biswas, A., Yildirim, Y., Yasar, E., Alqahtani, R.T.: Optical solitons for Lakshmanan–Porsezian–Daniel model with dual-dispersion by trial equation method. Optik 168, 432–439 (2018)

    Google Scholar 

  52. Zayed, E.M.E., Shohib, R.M.A., El-Horbaty, M.M., Biswas, A., Ekici, M., Alshomrani, A.S., Majid, F.B., Zhou, Q., Belic, M.R.: Optical solitons in birefringent fibers with Lakshmanan–Porsezian–Daniel model by the aid of a few insightful algorithms. Optik 200, 163281 (2020)

  53. Kumar, S., Biswas, A., Zhou, Q., Yildirim, Y., Alshehri, H.M., Belic, M.R.: Straddled optical solitons for cubic-quartic Lakshmanan–Porsezian–Daniel model by Lie symmetry. Phys. Rev. A 417, 127706 (2021)

    MathSciNet  MATH  Google Scholar 

  54. Wu, X.H., Gao, Y.T., Yu, X., Ding, C.C., Li, L.Q.: Modified generalized Darboux transformation and solitons for a Lakshmanan–Porsezian–Daniel equation. Chaos Soliton Fractal 162, 112399 (2022)

    MathSciNet  MATH  Google Scholar 

  55. Guo, B.L., Ling, L.M., Liu, Q.P.: Nonlinear Schrödinger equation: generalized Darboux transformation and rogue wave solutions. Phys. Rev. E 85, 026607 (2012)

    Google Scholar 

  56. Li, B.Q., Ma, Y.L.: Lax pair, Darboux transformation and Nth-order rogue wave solutions for a (2+1)-dimensional Heisenberg ferromagnetic spin chain equation. Comput. Math. Appl. 77, 514–524 (2019)

    MathSciNet  MATH  Google Scholar 

  57. Li, B.Q., Ma, Y.L.: N-order rogue waves and their novel colliding dynamics for a transient stimulated Raman scattering system arising from nonlinear optics. Nonlinear Dyn. 101, 2449–2461 (2020)

    Google Scholar 

  58. Li, B.Q., Ma, Y.L.: Extended generalized Darboux transformation to hybrid rogue wave and breather solutions for a nonlinear Schrödinger equation. Appl. Math. Comput. 386, 125469 (2020)

    MathSciNet  MATH  Google Scholar 

  59. Li, B.Q., Ma, Y.L.: The complex short pulse equation: multi-folded rogue waves and phase transition. Appl. Math. Lett. 135, 108399 (2023)

    MATH  Google Scholar 

  60. Ma, Y.L., Li, B.Q.: Kraenkel–Manna–Merle saturated ferromagnetic system: darboux transformation and loop-like soliton excitations. Chaos Soliton Fractal 159, 112179 (2022)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

B-QL was involved in methodology, formal analysis, data curation, writing—original draft. Y-LM helped in conceptualization, software, validation, writing—review and editing, methodology.

Corresponding author

Correspondence to Yu-Lan Ma.

Ethics declarations

Conflict of interest

The authors ensure the compliance with ethical standards for this work. The authors declare that there are no conflicts of interests with publication of this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, BQ., Ma, YL. Optical soliton resonances and soliton molecules for the Lakshmanan–Porsezian–Daniel system in nonlinear optics. Nonlinear Dyn 111, 6689–6699 (2023). https://doi.org/10.1007/s11071-022-08195-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-022-08195-8

Keywords

Navigation