Skip to main content
Log in

Bilinear form and Pfaffian solutions for a (2+1)-dimensional generalized Konopelchenko–Dubrovsky–Kaup–Kupershmidt system in fluid mechanics and plasma physics

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, a (2+1)-dimensional generalized Konopelchenko-Dubrovsky-Kaup-Kupershmidt system in fluid mechanics and plasma physics is investigated. Bilinear form under certain coefficient constraints is given via the Hirota method. The Nth-order Pfaffian solutions are proved by means of the Pfaffian technique, where N is a positive integer. N-soliton and the higher-order breather solutions are exported through the Nth-order Pfaffian solutions. Different two-soliton/breather structures and their dynamics are derived. Elastic/inelastic interactions between the two solitons/breathers are investigated. Graphical representations of the influence of the coefficients in the equation on the velocities and amplitudes of the solitons and breathers are exhibited.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availibility

Data sharing is not applicable to this article as no new data were created or analyzed in this study.

References

  1. Han, P.F., Bao, T.: Hybrid localized wave solutions for a generalized Calogero-Bogoyavlenskii-Konopelchenko-Schiff system in a fluid or plasma. Nonlinear Dyn. 108, 2513–2530 (2022)

    Google Scholar 

  2. Ma, H.C., Yue, S.P., Deng, A.P.: Nonlinear superposition between lump and other waves of the (2+1)-dimensional generalized Caudrey-Dodd-Gibbon-Kotera-Sawada equation in fluid dynamics. Nonlinear Dyn. 109, 1969–1983 (2022)

    Google Scholar 

  3. Raissi, M., Yazdani, A., Karniadakis, G.E.: Hidden fluid mechanics: learning velocity and pressure fields from flow visualizations. Science 367, 1026–1030 (2020)

    MathSciNet  MATH  Google Scholar 

  4. Liu, R.X., Tian, B., Liu, L.C., Qin, B., Lü, X.: Bilinear forms, N-soliton solutions and soliton interactions for a fourth-order dispersive nonlinear Schrödinger equation in condensed-matter physics and biophysics. Physica B 413, 120–125 (2013)

    Google Scholar 

  5. Falkovich, G.: Fluid Mechanics. Cambridge University Press, Cambridge (2018)

    MATH  Google Scholar 

  6. Zohuri, B.: Plasma Physics and Controlled Thermonuclear Reactions Driven Fusion Energy. Springer, Switzerland (2016)

    Google Scholar 

  7. Kumar, R., Verma, R.S.: Dynamics of invariant solutions of mKdV-ZK arising in a homogeneous magnetised plasma. Nonlinear Dyn. 108, 4081–4092 (2022)

    Google Scholar 

  8. Gao, X.Y., Guo, Y.J., Shan, W.R.: Oceanic shallow-water symbolic computation on a (2+1)-dimensional generalized dispersive long-wave system. Phys. Lett. A 457, 128552 (2023)

  9. Ankiewicz, A.: Rogue and semi-rogue waves defined by volume. Nonlinear Dyn. 104, 4241–4252 (2021)

    Google Scholar 

  10. Gao, X.Y., Guo, Y.J., Shan, W.R.: Reflecting upon some electromagnetic waves in a ferromagnetic film via a variable-coefficient modified Kadomtsev-Petviashvili system. Appl. Math. Lett. 132, 108189 (2022)

    MathSciNet  MATH  Google Scholar 

  11. Ren, B., Ma, W.X., Yu, J.: Rational solutions and their interaction solutions of the (2+1)-dimensional modified dispersive water wave equation. Comput. Math. Appl. 77, 2086–2095 (2019)

    MathSciNet  MATH  Google Scholar 

  12. Kumar, S., Mohan, B.: A study of multi-soliton solutions, breather, lumps, and their interactions for Kadomtsev-Petviashvili equation with variable time coeffcient using hirota method. Phys. Scr. 96, 125255 (2021)

    Google Scholar 

  13. Ma, Y.L., Wazwaz, A.M., Li, B.Q.: Novel bifurcation solitons for an extended Kadomtsev-Petviashvili equation in fluids. Phys. Lett. A 413, 127585 (2021)

    MathSciNet  MATH  Google Scholar 

  14. Kumar, S., Mohan, B., Kumar, R.: Lump, soliton, and interaction solutions to a generalized two-mode higher-order nonlinear evolution equation in plasma physics. Nonlinear Dyn. 110, 693–704 (2022)

    Google Scholar 

  15. Du, Z., Ma, Y.P.: Beak-shaped rogue waves for a higher-order coupled nonlinear Schrödinger system with 4 \(\times \) 4 Lax pair. Appl. Math. Lett. 116, 106999 (2021)

    MATH  Google Scholar 

  16. Zhang, R.F., Li, M.C., Al-Mosharea, E., Zheng, F.C., Bilige, S.: Rogue waves, classical lump solutions and generalized lump solutions for Sawada-Kotera-like equation. Int. J. Mod. Phys. B 36, 2250044 (2022)

    Google Scholar 

  17. Zhang, R.F., Li, M.C., Fang, T., Zheng, F.C., Bilige, S.: Multiple exact solutions for the dimensionally reduced p-gBKP equation via bilinear neural network method. Mod. Phys. Lett. B 36, 2150590 (2022)

    MathSciNet  Google Scholar 

  18. Zhang, R.F., Li, M.C., Gan, J.Y., Li, Q., Lan, Z.Z.: Novel trial functions and rogue waves of generalized breaking soliton equation via bilinear neural network method. Chaos Solitons Fract. 154, 111692 (2022)

    MathSciNet  MATH  Google Scholar 

  19. Zhang, R.F., Li, M.C., Albishari, M., Zheng, F.C., Lan, Z.Z.: Generalized lump solutions, classical lump solutions and rogue waves of the (2+1)-dimensional Caudrey-Dodd-Gibbon-Kotera-Sawada-like equation. Appl. Math. Comput. 403, 126201 (2021)

    MathSciNet  MATH  Google Scholar 

  20. Wazwaz, A.M.: On integrability of an extended Bogoyavlenskii-Kadomtsev-Petviashvili equation: multiple soliton solutions. Int. J. Numer. Modell. Electron. Netw. Devices Fields 34, e2817 (2021)

  21. Wazwaz, A.M.: Bright and dark optical solitons for (3+1)-dimensional hyperbolic nonlinear Schrödinger equation using a variety of distinct schemes. Optik 270, 170043 (2022)

    Google Scholar 

  22. Kaur, L., Wazwaz, A.M.: Optical soliton solutions of variable coefficient Biswas-Milovic (BM) model comprising Kerr law and damping effect. Optik 266, 169617 (2022)

    Google Scholar 

  23. Zhou, T.Y., Tian, B.: Auto-Bäcklund transformations, Lax pair, bilinear forms and bright solitons for an extended (3+1)-dimensional nonlinear Schrödinger equation in an optical fiber. Appl. Math. Lett. 133, 108280 (2022)

  24. Shen, Y., Tian, B., Zhou, T.Y., Gao, X.T.: N-Darboux transformation and solitonic interactions for the Kraenkel-Manna-Merle-system in a saturated ferromagnetic material. Nonlinear Dyn. (2022). https://doi.org/10.1007/s11071-022-07959-6

  25. Cheng, C.D., Tian, B., Zhang, C.R., Zhao, X.: Bilinear form, soliton, breather, hybrid and periodic-wave solutions for a (3+1)-dimensional Korteweg-de Vries equation in a fluid. Nonlinear Dyn. 105, 2525–2538 (2021)

  26. Shen, Y., Tian, B., Liu, S.H., Zhou, T.Y.: Studies on certain bilinear form, N-soliton, higher-order breather, periodic-wave and hybrid solutions to a (3+1)-dimensional shallow water wave equation with time-dependent coefficients. Nonlinear Dyn. 108, 2447–2460 (2022)

  27. Yu, X., Sun, Z.Y.: Parabola solitons for the nonautonomous KP equation in fluids and plasmas. Ann. Phys.-New York 367, 251–257 (2016)

  28. Wu, X.H., Gao, Y.T., Yu, X., Ding, C.C., Li, L.Q.: Modified generalized Darboux transformation, degenerate and bound-state solitons for a Laksmanan-Porsezian-Daniel equation in a ferromagnetic spin chain. Chaos Solitons Fract. 162, 112399 (2022)

    MATH  Google Scholar 

  29. Li, B.Q., Ma, Y.L.: Interaction properties between rogue wave and breathers to the manakov system arising from stationary self-focusing electromagnetic systems. Chaos Solitons Fract. 156, 111832 (2022)

    MathSciNet  MATH  Google Scholar 

  30. El-Tantawy, S.A., Alharbey, R.A., Salas, A.H.: Novel approximate analytical and numerical cylindrical rogue wave and breathers solutions: an application to electronegative plasma. Chaos Solitons Fract. 155, 111776 (2022)

    MathSciNet  MATH  Google Scholar 

  31. Hirota, R.: The Direct Method in Soliton Theory. Cambridge University Press, New York (2004)

    MATH  Google Scholar 

  32. Kumar, S., Mohan, B.: A novel and efficient method for obtaining Hirota’s bilinear form for the nonlinear evolution equation in (n+1) dimensions. Partial Differ. Equ. Appl. Math. 5, 100274 (2022)

    Google Scholar 

  33. Kumar, S., Mohan, B., Kumar, A.: Generalized fifth-order nonlinear evolution equation for the Sawada-Kotera, Lax, and Caudrey-Dodd-Gibbon equations in plasma physics: Painlevé analysis and multi-soliton solutions. Phys. Scr. 97, 035201 (2022)

    Google Scholar 

  34. Wazwaz, A.M.: Painlevé integrability and lump solutions for two extended (3+1)- and (2+1)-dimensional Kadomtsev–Petviashvili equations. Nonlinear Dyn. (2022). https://doi.org/10.1007/s11071-022-08074-2

  35. Zhang, R.F., Li, M.C., Yin, H.M.: Rogue wave solutions and the bright and dark solitons of the (3+1)-dimensional Jimbo-Miwa equation. Nonlinear Dyn. 103, 1071–1079 (2021)

    Google Scholar 

  36. Zhang, R.F., Bilige, S., Liu, J.G., Li, M.C.: Bright-dark solitons and interaction phenomenon for p-gBKP equation by using bilinear neural network method. Phys. Scr. 96, 025224 (2021)

    Google Scholar 

  37. Zhou, T.Y., Tian, B., Chen, Y.Q., Shen, Y.: Painlevé analysis, auto-Bäcklund transformation and analytic solutions of a (2+1)-dimensional generalized Burgers system with the variable coefficients in a fluid. Nonlinear Dyn. 108, 2417–2428 (2022)

  38. Wei, G.M., Lu, Y.L., Xie, Y.Q., Zheng, W.X.: Lie symmetry analysis and conservation law of variable-coefficient Davey-Stewartson equation. Comput. Math. Appl. 75, 3420–3430 (2018)

  39. Yu, X., Sun, Z.Y.: Unconventional characteristic line for the nonautonomous KP equation. Appl. Math. Lett. 100, 106047 (2020)

  40. Guan, S.N., Wei, G.M., Li, Q.: Lie symmetry analysis, optimal system and conservation law of a generalized (2+1)-dimensional Hirota-Satsuma-Ito equation. Mod. Phys. Lett. B 35, 2150515 (2021)

  41. Zhang, R.F., Li, M.C.: Bilinear residual network method for solving the exactly explicit solutions of nonlinear evolution equations. Nonlinear Dyn. 108, 521–531 (2022)

    Google Scholar 

  42. Zhang, R.F., Bilige, S.: Bilinear neural network method to obtain the exact analytical solutions of nonlinear partial differential equations and its application to p-gBKP equation. Nonlinear Dyn. 95, 3041–3048 (2019)

    MATH  Google Scholar 

  43. Wazwaz, A.M., Albalawi, W., El-Tantawy, S.A.: Optical envelope soliton solutions for coupled nonlinear Schrödinger equations applicable to high birefringence fibers. Optik 255, 168673 (2022)

    Google Scholar 

  44. Wu, X.H., Gao, Y.T., Yu, X., Ding, C.C., Li, L.Q.: Modified generalized Darboux transformation, degenerate and bound-state solitons for a Laksmanan-Porsezian-Daniel equation. Chaos Solitons Fract. 162, 112399 (2022)

    MATH  Google Scholar 

  45. Wu, X.H., Gao, Y.T., Yu, X., Ding, C.C.: N-fold generalized Darboux transformation and soliton interactions for a three-wave resonant interaction system in a weakly nonlinear dispersive medium. Chaos Solitons Fract. 165, 112786 (2022)

    MathSciNet  MATH  Google Scholar 

  46. Kumar, S., Dhiman, S.K., Baleanu, D., Osman, M.S., Wazwaz, A.M.: Lie symmetries, closed-form solutions, and various dynamical profiles of solitons for the variable coefficient (2+1)-dimensional KP equations. Symmetry 14, 597 (2022)

    Google Scholar 

  47. Liu, F.Y., Gao, Y.T.: Lie group analysis for a higher-order Boussinesq-Burgers system. Appl. Math. Lett. 132, 108094 (2022)

    MathSciNet  MATH  Google Scholar 

  48. Liu, F.Y., Gao, Y.T., Yu, X., Ding, C.C.: Wronskian, Gramian, Pfaffian and periodic-wave solutions for a (3+1)-dimensional generalized nonlinear evolution equation arising in the shallow water waves. Nonlinear Dyn. 108, 1599–1616 (2022)

    Google Scholar 

  49. Yu, G.F., Tam, H.W.: A vector asymmetrical NNV equation: soliton solutions, bilinear Bäcklund transformation and Lax pair. J. Math. Anal. Appl. 344, 593–600 (2008)

    MathSciNet  MATH  Google Scholar 

  50. Xu, Z.W., Yu, G.F., Zhu, Z.N.: Bright-dark soliton solutions of the multi-component AB system. Wave Motion 83, 134–147 (2018)

    MathSciNet  MATH  Google Scholar 

  51. Cheng, C.D., Tian, B., Ma, Y.X., Zhou, T.Y., Shen, Y.: Pfaffian, breather, and hybrid solutions for a (2+1)-dimensional generalized nonlinear system in fluid mechanics and plasma physics. Phys. Fluids 34, 115132 (2022)

    Google Scholar 

  52. Cheng, L., Zhang, Y.: Pfaffian and rational solutions for a new form of the (3+1)-dimensional BKP equation in fluid dynamics. Eur. Phys. J. Plus 133, 437 (2018)

    Google Scholar 

  53. Feng, L.L., Tian, S.F., Yan, H., Wang, L., Zhang, T.T.: On periodic wave solutions and asymptotic behaviors to a generalized Konopelchenko-Dubrovsky-Kaup-Kupershmidt equation. Eur. Phys. J. Plus 131, 241 (2016)

    Google Scholar 

  54. Liu, W.H., Shi, Y.F., Shi, D.D.: Analysis on lump, lumpoff and rogue waves with predictability to a generalized Konopelchenko–Dubrovsky–Kaup–Kupershmidt equation. Commun. Theor. Phys. 71, 670 (2019)

    MathSciNet  MATH  Google Scholar 

  55. Deng, G.F., Gao, Y.T., Ding, C.C., Su, J.J.: Solitons and breather waves for the generalized Konopelchenko-Dubrovsky-Kaup-Kupershmidt system in fluid mechanics, ocean dynamics and plasma physics. Chaos Solitons Fract. 140, 110085 (2020)

    MathSciNet  MATH  Google Scholar 

  56. Zhang, C.Y., Gao, Y.T., Li, L.Q., Ding, C.C.: The higher-order lump, breather and hybrid solutions for the generalized Konopelchenko-Dubrovsky-Kaup-Kupershmidt equation in fluid mechanics. Nonlinear Dyn. 102, 1773–1786 (2020)

    Google Scholar 

  57. Zhou, X.J., Ilhan, O.A., Manafian, J., Singh, G., Tuguz, N.S.: N-lump and interaction solutions of localized waves to the (2+1)-dimensional generalized KDKK equation. J. Geom. Phys. 168, 104312 (2021)

    MathSciNet  MATH  Google Scholar 

  58. Ilhan, O.A., Abdulazeez, S.T., Manafian, J., Azizi, H., Zeynalli, S.M.: Multiple rogue and soliton wave solutions to the generalized Konopelchenko-Dubrovsky-Kaup-Kupershmidt equation arising in fluid mechanics and plasma physics. Mod. Phys. Lett. B 35, 2150383 (2021)

    MathSciNet  Google Scholar 

  59. Yuan, P.S., Qi, J.X., Li, Z.L., An, H.L.: General M-lumps, T-breathers, and hybrid solutions to (2+1)-dimensional generalized KDKK equation. Chin. Phys. B 30, 040503 (2021)

    Google Scholar 

  60. Ma, H.C., Gao, Y.D., Deng, A.P.: Fission and fusion solutions of the (2+1)-dimensional generalized Konopelchenko-Dubrovsky-Kaup-Kupershmidt equation: case of fluid mechanics and plasma physics. Nonlinear Dyn. 108, 4123–4137 (2022)

    Google Scholar 

  61. Zhang, Y.Y., Liu, Z.Q., Qi, J.X., An, H.L.: Soliton molecules, T-breather molecules and some interaction solutions in the (2+1)-dimensional generalized KDKK equation. Chin. Phys. B 108, 4123 (2022)

    Google Scholar 

  62. Fan, S.W., Wu, H.L., Fei, J.X., Cao, W.P., Ma, Z.Y.: Soliton molecule and their interaction solutions for the (2+1)-dimensional gKDKK equation. Int. J. Mod. Phys. B 36, 2250048 (2022)

    Google Scholar 

  63. Ma, H.C., Cheng, Q.X., Deng, A.P.: Soliton molecules and some novel hybrid solutions for the (2+ 1)-dimensional generalized Konopelchenko–Dubrovsky–Kaup–Kupershmidt equation. Commun. Theor. Phys. 72, 095001 (2020)

    MathSciNet  Google Scholar 

  64. Li, Y., Yao, R., Xia, Y.: Molecules and new interactional structures for a (2+1)-dimensional generalized Konopelchenko-Dubrovsky-Kaup-Kupershmidt equation. Acta Math. Sci. 43, 80–96 (2023)

    MathSciNet  MATH  Google Scholar 

  65. Hirota, R.: Exact solution of the Korteweg-de Vries equation for multiple collisions of solitons. Phys. Rev. Lett. 27, 1192-1194 (1971)

  66. Wazwaz, A.M.: Construction of solitary wave solutions and rational solutions for the KdV equation by Adomian decomposition method. Chaos Soliton Fract. 12, 2283–2293 (2001)

    MathSciNet  MATH  Google Scholar 

  67. Khan, K., Akbar, M.A.: Exact traveling wave solutions of Kadomtsev–Petviashvili equation. J. Egypt. Math. Soc. 23, 278–281 (2015)

    MathSciNet  MATH  Google Scholar 

  68. Ablowitz, M.J., Biondini, G., Wang, Q.: Whitham modulation theory for the Kadomtsev-Petviashvili equation. Proc. R. Soc. A 473, 20160695 (2017)

  69. Qin, B., Tian, B., Liu, L.C., Meng, X.H., Liu, W.J.: Bäcklund transformation and multisoliton solutions in terms of Wronskian determinant for (2+1)-dimensional breaking soliton equations with symbolic computation. Commun. Theor. Phys. 54, 1059–1066 (2010)

    MathSciNet  MATH  Google Scholar 

  70. Lü, X., Li, J.: Integrability with symbolic computation on the Bogoyavlensky-Konoplechenko model: bell-polynomial manipulation, bilinear representation, and Wronskian solution. Nonlinear Dyn. 77, 135–143 (2014)

    MathSciNet  MATH  Google Scholar 

  71. Liang, Y.Q., Wei, G.M., Li, X.N.: Painlevé integrability, similarity reductions, new soliton and soliton-like similarity solutions for the (2+1)-dimensional BKP equation. Nonlinear Dyn. 62, 195–202 (2010)

    MATH  Google Scholar 

  72. Wazwaz, A.M.: Two B-type Kadomtsev-Petviashvili equations of (2+1) and (3+1) dimensions: multiple soliton solutions, rational solutions and periodic solutions. Comput. Fluids 86, 357–362 (2013)

    MathSciNet  MATH  Google Scholar 

  73. Li, L.Q., Gao, Y.T., Hu, L., Jia, T.T., Ding, C.C., Feng, Y.J.: Bilinear form, soliton, breather, lump and hybrid solutions for a (2+1)-dimensional Sawada-Kotera equation. Nonlinear Dyn. 100, 2729–2738 (2020)

    Google Scholar 

Download references

Acknowledgements

We express our sincere thanks to the Editors and Reviewers for their valuable comments. This work has been supported by the National Natural Science Foundation of China under Grant Nos. 11772017, 11272023 and 11471050, by the Fund of State Key Laboratory of Information Photonics and Optical Communications (Beijing University of Posts and Telecommunications), China (IPOC: 2017ZZ05) and by the Fundamental Research Funds for the Central Universities of China under Grant No. 2011BUPTYB02.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Tian.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, CD., Tian, B., Shen, Y. et al. Bilinear form and Pfaffian solutions for a (2+1)-dimensional generalized Konopelchenko–Dubrovsky–Kaup–Kupershmidt system in fluid mechanics and plasma physics. Nonlinear Dyn 111, 6659–6675 (2023). https://doi.org/10.1007/s11071-022-08189-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-022-08189-6

Keywords

Navigation