Skip to main content

Advertisement

Log in

A dual-stage inerter-enhanced nonlinear energy sink

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Both the nonlinear energy sink (NES) and the inerters have received extensive attention in the field of vibration control. In this study, we propose a dual-stage inerter-enhanced NES (IE-NES) to be an enhanced for substantial transmissibility reduction with tunable performance. The harmonic balance method and the Runge–Kutta method are employed to obtain the system responses. Computational results demonstrate good agreement between the analytical and numerical solutions. Parametric studies suggest that the inertance of inerters attached to the different NES masses has diverse effects on the vibration mitigation capacity of the IE-NES system. All the simulations are implemented in the vicinity of 1:1 resonance. It is found that the IE-NES improves the target energy transfer efficiency with proper inertance, leading to high-efficient vibration suppression. In addition, the inerter-induced new dynamics properties such as the transition among different response regimes are investigated. The study on the influence of the initial conditions and global bifurcation is exerted to reveal the complex dynamic behaviour of the IE-NES under various working conditions. The results show that such a type of NES paves a new road for advanced NES design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

Enquiries about data availability should be directed to the authors.

References

  1. Cheng, Z.B., Palermo, A., Shi, Z.F., Marzani, A.: Enhanced tuned mass damper using an inertial amplification mechanism. J. Sound Vib. 475, 115267 (2020)

    Google Scholar 

  2. Pietrosanti, D., De Angelis, M., Basili, M.: A generalized 2-DOF model for optimal design of MDOF structures controlled by tuned mass damper inerter (TMDI). Int. J. Mech. Sci. 185, 105849 (2020)

    Google Scholar 

  3. Zhao, F., Cao, S.Q., Luo, Q.T., Li, L.Q., Ji, J.C.: Practical design of the QZS isolator with one pair of oblique bars by considering pre-compression and low-dynamic stiffness. Nonlinear Dyn. 108, 3313–3330 (2022)

    Google Scholar 

  4. Zhao, F., Ji, J.C., Luo, Q.T., Cao, S.Q., Chen, L.M., Du, W.L.: An improved quasi-zero stiffness isolator with two pairs of oblique springs to increase isolation frequency band. Nonlinear Dyn. 104, 349–365 (2021)

    Google Scholar 

  5. Zhao, F., Ji, J.C., Ye, K., Luo, Q.T.: An innovative quasi-zero stiffness isolator with three pairs of oblique springs. Int. J. Mech. Sci. 192, 106903 (2021)

    Google Scholar 

  6. Vakakis, A.F.: Inducing passive nonlinear energy sinks in vibrating systems. J. Vib. Acoust. 123, 324–332 (2001)

    Google Scholar 

  7. Vakakis, A.F., Gendelman, O.V., Bergman, L.A., McFarland, D.M., Kerschen, G., Lee, Y.S.: Nonlinear Targeted Energy Transfer in Mechanical and Structural Systems, pp. 161–229. Springer, Berlin (2008)

    MATH  Google Scholar 

  8. Gendelman, O.V.: Targeted energy transfer in systems with external and self-excitation. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 225, 2007–2043 (2011)

    Google Scholar 

  9. Qiu, D.H., Seguy, S., Paredes, M.: Tuned nonlinear energy sink with conical spring: design theory and sensitivity analysis. J. Mech. Des. 140, 011404 (2017)

    Google Scholar 

  10. Vakakis, A.F., Gendelman, O.V.: Energy pumping in nonlinear mechanical oscillators: part II—resonance capture. J. Appl. Mech. 68, 42–48 (2001)

    MathSciNet  MATH  Google Scholar 

  11. Ding, H., Chen, L.Q.: Designs, analysis, and applications of nonlinear energy sinks. Nonlinear Dyn. 100, 3061–3107 (2020)

    Google Scholar 

  12. Li, J.J., He, X.F., Yang, X.K., Liu, Y.F.: A consistent geometrically nonlinear model of cantilevered piezoelectric vibration energy harvesters. J. Sound Vib. 486, 115614 (2020)

    Google Scholar 

  13. Ghayesh, M.H., Farokhi, H.: Nonlinear broadband performance of energy harvesters. Int. J. Eng. Sci. 147, 103202 (2020)

    MathSciNet  MATH  Google Scholar 

  14. Kerschen, G., Peeters, M., Golinval, J.C., Vakakis, A.F.: Nonlinear normal modes, Part I: a useful framework for the structural dynamicist. Mech. Syst. Signal Process 23, 170–194 (2009)

    Google Scholar 

  15. Peeters, M., Viguié, R., Sérandour, G., Kerschen, G., Golinval, J.C.: Nonlinear normal modes, part II: toward a practical computation using numerical continuation techniques. Mech. Syst. Signal Process 23, 195–216 (2009)

    Google Scholar 

  16. Vakakis, A.F., Rand, R.H.: Normal modes and global dynamics of a two-degree-of-freedom non-linear system—I. low energies. Int. J. Non Linear Mech. 27, 861–874 (1992)

    MATH  Google Scholar 

  17. Vakakis, A.F.: Non-similar normal oscillation in a strongly non-linear discrete system. J. Sound Vib. 158, 341–361 (1992)

    MathSciNet  MATH  Google Scholar 

  18. Happawana, G.S., Bajaj, A.K.: An analytical solution to non-linear normal modes in a strongly non-linear discrete system. J. Sound Vib. 183, 361–367 (1995)

    MATH  Google Scholar 

  19. Aubrecht, J., Vakakis, A.F., Tsao, T.C., Bentsman, J.: Experimental of non-linear transient motion confinement in a system of coupled beams. J. Sound Vib. 195, 629–648 (1996)

    Google Scholar 

  20. Klimenko, A.A., Mikhlin, Y.V., Awrejcewicz, J.: Nonlinear normal modes in pendulum systems. Nonlinear Dyn. 70, 797–813 (2012)

    MathSciNet  MATH  Google Scholar 

  21. Kerschen, G., Peeters, M., Golinval, J.C., Stephen, C.: Nonlinear modal analysis of a full-scale aircraft. J. Aircr 50, 1409–1419 (2014)

    Google Scholar 

  22. Erdogen, Y.S.: A study on the crack detection in beams using linear and nonlinear normal modes. Adv. Struct. Eng. 23, 1305–1321 (2019)

    Google Scholar 

  23. Zulli, D., Luongo, A.: Nonlinear energy sink to control vibrations of an internally nonresonant elastic string. Meccanica 50, 781–794 (2015)

    MathSciNet  MATH  Google Scholar 

  24. Fang, Z.W., Zhang, Y.W., Li, X., Ding, H., Chen, L.Q.: Integration of a nonlinear energy sink and a giant magnetostrictive energy harvester. J. Sound Vib. 391, 35–49 (2016)

    Google Scholar 

  25. Geng, X.F., Ding, H.: Two-modal resonance control with an encapsulated nonlinear energy sink. J. Sound Vib. 520, 116667 (2022)

    Google Scholar 

  26. Yang, T.Z., Liu, T., Tang, Y., Hou, S., Lv, X.F.: Enhanced targeted energy transfer for adaptive vibration suppression of pipes conveying fluid. Nonlinear Dyn. 97, 1937–1944 (2019)

    Google Scholar 

  27. Dang, W.H., Wang, Z.H., Chen, L.Q., Yang, T.Z.: A high-effificient nonlinear energysink with a one-way energy converter. Nonlinear Dyn. 109, 2247–2261 (2022)

    Google Scholar 

  28. Zang, J., Cao, R.Q., Zhang, Y.W., Fang, B., Chen, L.Q.: A lever-enhanced nonlinear energy sink absorber harvesting vibratory energy via giant magnetostrictive-piezoelectricity. Commun. Nonlinear Sci. Numer. Simul. 95, 105620 (2021)

    MathSciNet  MATH  Google Scholar 

  29. Zang, J., Yuan, T.C., Lu, Z.Q., Zhang, Y.W., Ding, H., Chen, L.Q.: A lever-type nonlinear energy sink. J. Sound Vib. 437, 119–134 (2018)

    Google Scholar 

  30. Geng, X.F., Ding, H.: Theoretical and experimental study of an enhanced nonlinear energy sink. Nonlinear Dyn. 104, 3269–3291 (2021)

    Google Scholar 

  31. Yao, H.L., Cao, Y.B., Wang, Y.W., Wen, B.C.: A tri-stable nonlinear energy sink with piecewise stiffness. J. Sound Vib. 463, 114971 (2019)

    Google Scholar 

  32. Li, X.L., Liu, K.F., Xiong, L.Y., Tang, L.H.: Development and validation of a piecewise linear nonlinear energy sink for vibration suppression and energy harvesting. J. Sound Vib. 503, 116104 (2021)

    Google Scholar 

  33. Wang, J.J., Zhang, C., Li, H.B., Liu, Z.B.: Experimental and numerical studies of a novel track bistable nonlinear energy sink with improved energy robustness for structural response mitigation. Eng. Struct. 237, 112184 (2021)

    Google Scholar 

  34. Lynch, J.P., Wang, Y., Swartz, R.A., Lu, K.C., Loh, C.H.: Implementation of a closed-loop structural control system using wireless sensor networks. Struct. Control Health Monit. 15, 518–239 (2008)

    Google Scholar 

  35. Yang, T.Z., Hou, S., Qin, Z.H., Ding, Q., Chen, L.Q.: A dynamic reconfifigurable nonlinear energy sink. J. Sound Vib. 494, 115629 (2019)

    Google Scholar 

  36. Gendelman, O.V., Sapsis, T., Vakakis, A.F., Bergman, L.A.: Enhanced passive targeted energy transfer in strongly nonlinear mechanical oscillators. J. Sound Vib. 330, 1–8 (2011)

    Google Scholar 

  37. Grinberg, I., Lanton, V., Gendelman, O.V.: Response regimes in linear oscillator with 2DOF nonlinear energy sink under periodic forcing. Nonlinear Dyn. 69, 1889–1902 (2012)

    MathSciNet  Google Scholar 

  38. Smith, M.C.: Synthesis of mechanical networks: the inerter. IEEE Trans. Automat. Contr. 47, 1648–1662 (2002)

    MathSciNet  MATH  Google Scholar 

  39. Ikago, K., Saito, K., Inoue, N.: Seismic control of single-degree-of-freedom structure using tuned viscous mass damper. Earthq. Eng. Struct. Dyn. 41, 453–474 (2012)

    Google Scholar 

  40. Giaralis, A., Petrini, F.: Wind-induced vibration mitigation in tall buildings using the tuned mass-damper-inerter. J. Struct. Eng. 143, 08217004 (2018)

    Google Scholar 

  41. Sun, L.M., Hong, D.X., Chen, L.: Cables interconnected with tuned inerter damper for vibration mitigation. Eng. Struct. 151, 57–67 (2017)

    Google Scholar 

  42. Xu, K., Bi, K.M., Han, Q., Li, X.P., Du, X.L.: Using tuned mass damper inerter to mitigate vortex-induced vibration of long-span bridges: analytical study. Eng. Struct. 182, 101–111 (2019)

    Google Scholar 

  43. Chen, H.Y., Mao, X.Y., Ding, H., Chen, L.Q.: Elimination of multimode resonances of composite plate by inertial nonlinear energy sinks. Mech. Syst. Signal Process 135, 106383 (2020)

    Google Scholar 

  44. Zhang, Z., Ding, H., Zhang, Y.W., Chen, L.Q.: Vibration suppression of an elastic beam with boundary inerter-enhanced nonlinear energy sinks. Acta Mech. Sin. 37, 387–401 (2021)

    MathSciNet  Google Scholar 

  45. Yang, K., Zhang, Y.W., Ding, H., Chen, L.Q.: The transmissibility of nonlinear energy sink based on nonlinear output frequency-response functions. Commun. Nonlinear Sci. Numer. Simul. 44, 184–192 (2017)

    MathSciNet  MATH  Google Scholar 

  46. Luo, A.C.J., Huang, J.Z.: Approximate solutions of periodic motions in nonlinear systems via a generalized harmonic balance. J. Vib. Control 18, 1661–1674 (2011)

    MathSciNet  Google Scholar 

  47. Starosvetsky, Y., Gendelman, O.V.: Attractors of harmonically forced linear oscillator with attached nonlinear energy sink. II: optimization of a nonlinear vibration absorber. Nonlinear Dyn. 51, 47–57 (2008)

    MATH  Google Scholar 

  48. Guo, H.L., Yang, T.Z., Chen, Y.S., Chen, L.Q.: Singularity analysis on vibration reduction of a nonlinear energy sink system. Mech. Syst. Signal Process 173, 109074 (2022)

    Google Scholar 

  49. Starosvetsky, Y., Gendelman, O.V.: Strongly modulated response in forced 2DOF oscillatory system with essential mass and potential asymmetry. Physica D 237, 1719–1733 (2008)

    MathSciNet  MATH  Google Scholar 

  50. Gendelman, O.V., Starosvetsky, Y., Feldman, M.: Attractors of harmonically forced linear oscillator with attached nonlinear energy sink I: description of response regimes. Nonlinear Dyn. 51, 31–46 (2008)

    MATH  Google Scholar 

  51. Deng, S.N., Ji, J.C., Wen, G.L., Xu, H.D.: Two-parameter dynamics of an autonomous mechanical governor system with time delay. Nonlinear Dyn. 107, 641–663 (2022)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of China [Grant Numbers 1207221, 12232014], the Fundamental Research Funds for the Central Universities [Grant Number 2013017] and the Ten Thousand Talents Program.

Funding

This work was supported by the Natural Science Foundation of China [Grant Numbers 1207221 and 12232014], the Fundamental Research Funds for the Central Universities [Grant Number 2013017] and the Ten Thousand Talents Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tianzhi Yang.

Ethics declarations

Conflict of interest

The author(s) declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dang, W., Liu, S., Chen, L. et al. A dual-stage inerter-enhanced nonlinear energy sink. Nonlinear Dyn 111, 6001–6015 (2023). https://doi.org/10.1007/s11071-022-08183-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-022-08183-y

Keywords

Navigation