Skip to main content
Log in

Hidden attractors and metamorphoses of basin boundaries in optomechanics

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Optomechanical systems are known to exhibit self-sustained limit cycles once driven above the parametric instability point. By increasing the driving in the unresolved sideband limit, they reach chaotic regime through the cascaded period doubling process. Here, we study classical nonlinear dynamics of optomechanical systems operating in the resolved sideband regime (\(\omega _m/\kappa \gg 1\)) having a high mechanical \(Q-\)factor. We combine numerical simulations and analytical calculations to predict new nonlinear phenomena, so far unexplored in optomechanics. In the regime of single optical mode in the cavity, we connect the dynamical multistability to the hidden attractors, i.e., stable periodic state whose basin of attraction does not overlap with the neighbourhood of an unstable equilibrium point. In the regime where more than one optical modes are involved, we show that complex dynamics like metamorphoses of basin boundaries take place. These metamorphoses, which are revealed through the creation (or disappearance) of some new (or old) basin sets, are induced via the increase of the input driving field. Interestingly, we point out also the frequency locking effect which prevents all routes to chaos in the system. However, the locking range shrinks rapidly as the optical linewidth increases. The concept of hidden attractors introduced here provides new opportunities to generate nonclassical states. Moreover, the frequency locking effect can be useful for stable clock oscillations, for metrological applications and to control oscillations in optomechanics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Leonov, G.A., Kuznetsov, N.V.: Hidden attractors in dynamical systems. From hidden oscillations in Hilbert–Kolmogorov, Aizerman, and Kalman problems to hidden chaotic attractor in Chua circuits. Int. J. Bifurc. Chaos 23, 1330002 (2013). https://doi.org/10.1142/s0218127413300024

    Article  MathSciNet  MATH  Google Scholar 

  2. Leonov, G.A., Kuznetsov, N.V., Vagaitsev, V.I.: Localization of hidden Chua attractors. Phys. Lett. A 375, 2230 (2011). https://doi.org/10.1016/j.physleta.2011.04.037

    Article  MathSciNet  MATH  Google Scholar 

  3. Leonov, G., Kuznetsov, N., Vagaitsev, V.: Hidden attractor in smooth Chua systems. Physica D 241(18), 1482 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  4. Dudkowski, D., Jafari, S., Kapitaniak, T., Kuznetsov, N.V., Leonov, G.A., Prasad, A.: Hidden attractors in dynamical systems. Phys. Rep. 637, 1 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  5. Grebogi, C., Ott, E., Yorke, J.A.: Metamorphoses of basin boundaries in nonlinear dynamical systems. Phys. Rev. Lett. 56, 1011 (1986). https://doi.org/10.1103/physrevlett.56.1011

    Article  MathSciNet  Google Scholar 

  6. Grebogi, C., Ott, E., Yorke, J.A.: Basin boundary metamorphoses: changes in accessible boundary orbits. Phys. D Nonlinear Phenom. 24, 243 (1987). https://doi.org/10.1016/0167-2789(87)90078-9

    Article  MathSciNet  MATH  Google Scholar 

  7. Alligood, K.T., Tedeschini-Lalli, L., Yorke, J.A.: Metamorphoses: sudden jumps in basin boundaries. Commun. Math. Phys. 141, 1 (1991). https://doi.org/10.1007/bf02100002

    Article  MathSciNet  MATH  Google Scholar 

  8. Aguirre, J., Viana, R.L., Sanjuán, M.A.F.: Fractal structures in nonlinear dynamics. Rev. Mod. Phys. 81, 333 (2009). https://doi.org/10.1103/revmodphys.81.333

    Article  Google Scholar 

  9. Ni, X., Ying, L., Lai, Y.C., Do, Y., Grebogi, C.: Complex dynamics in nanosystems. Phys. Rev. E 87(5), 052911 (2013)

    Article  Google Scholar 

  10. Metzger, C., Ludwig, M., Neuenhahn, C., Ortlieb, A., Favero, I., Karrai, K., Marquardt, F.: Self-induced oscillations in an optomechanical system driven by bolometric backaction. Phys. Rev. Lett. 101(13), 133903 (2008). https://doi.org/10.1103/PhysRevLett.101.133903

    Article  Google Scholar 

  11. Lörch, N., Qian, J., Clerk, A., Marquardt, F., Hammerer, K.: Laser theory for optomechanics: limit cycles in the quantum regime. Phys. Rev. X 4, 011015 (2014). https://doi.org/10.1103/PhysRevX.4.011015

    Article  Google Scholar 

  12. Marquardt, F., Harris, J.G.E., Girvin, S.M.: Dynamical multistability induced by radiation pressure in high-finesse micromechanical optical cavities. Phys. Rev. Lett. 96, 103901 (2006). https://doi.org/10.1103/PhysRevLett.96.103901

    Article  Google Scholar 

  13. Kingni, S.T., Tchodimou, C., Foulla, D.P., Djorwe, P., Engo, S.G.N.: Antimonotonicity, coexisting attractors and bursting oscillations in optomechanical system: analysis and electronic implementation. Eur. Phys. J. Spec. Top. 229(6–7), 1117 (2020). https://doi.org/10.1140/epjst/e2020-900178-0

    Article  Google Scholar 

  14. Djorwé, P., Mbé, J.H.T., Engo, S.G.N., Woafo, P.: Classical and semiclassical studies of nonlinear nano-optomechanical oscillators. Eur. Phys. J. D 67(2), 1–9 (2013). https://doi.org/10.1140/epjd/e2013-30581-0

    Article  Google Scholar 

  15. Monifi, F., Zhang, J., Ozdemir Şahin, K., Peng, B., Liu, Y.X., Bo, F., Nori, F., Yang, L.: Optomechanically induced stochastic resonance and chaos transfer between optical fields. Nat. Photon. 10(6), 399–405 (2016). https://doi.org/10.1038/nphoton.2016.73

    Article  Google Scholar 

  16. Djorwe, P., Effa, J.Y., Engo, S.G.N.: Multistability, staircases, and optical high-order sideband combs in optomechanics. J. Opt. Soc. Am. B 37(11), A36 (2020). https://doi.org/10.1364/JOSAB.396237

    Article  Google Scholar 

  17. Foulla, D.P., Djorwé, P., Kingni, S.T., Engo, S.G.N.: Optomechanical systems close to the conservative limit. Phys. Rev. A 95, 013831 (2017). https://doi.org/10.1103/PhysRevA.95.013831

    Article  Google Scholar 

  18. Zaitsev, S., Gottlieb, O., Buks, E.: Nonlinear dynamics of a microelectromechanical mirror in an optical resonance cavity. Nonlinear Dyn. 69, 1589 (2012). https://doi.org/10.1007/s11071-012-0371-9

    Article  MathSciNet  Google Scholar 

  19. Gao, M., Lei, F.C., Du, C.G., Long, G.L.: Self-sustained oscillation and dynamical multistability of optomechanical systems in the extremely-large-amplitude regime. Phys. Rev. A 91(1), 013833 (2015). https://doi.org/10.1103/PhysRevA.91.013833

    Article  Google Scholar 

  20. Carmon, T., Cross, M.C., Vahala, K.J.: Chaotic quivering of micron-scaled on-chip resonators excited by centrifugal optical pressure. Phys. Rev. Lett. 98(16), 167203 (2007). https://doi.org/10.1103/PhysRevLett.98.167203

  21. Zhang, Y., Zhang, H.: Metamorphoses of basin boundaries with complex topology in an archetypal oscillator. Nonlinear Dyn. 79(4), 2309 (2015). https://doi.org/10.1007/s11071-014-1813-3

    Article  MathSciNet  Google Scholar 

  22. Zhang, L., Kong, H.Y.: Self-sustained oscillation and harmonic generation in optomechanical systems with quadratic couplings. Phys. Rev. A 89, 023847 (2014). https://doi.org/10.1103/physreva.89.023847

  23. Hossein-Zadeh, M., Vahala, K.J.: Observation of injection locking in an optomechanical RF oscillator. Appl. Phys. Lett. 93, 191115 (2008). https://doi.org/10.1063/1.3028024

    Article  Google Scholar 

  24. Feudel, U., Grebogi, C.: Why are chaotic attractors rare in multistable systems. Phys. Rev. Lett. 91, 134102 (2003). https://doi.org/10.1103/physrevlett.91.134102

    Article  Google Scholar 

  25. Djorwe, P., Pennec, Y., Djafari-Rouhani, B.: Frequency locking and controllable chaos through exceptional points in optomechanics. Phys. Rev. E 98, 032201 (2018). https://doi.org/10.1103/PhysRevE.98.032201

    Article  Google Scholar 

  26. Djorwé, P., Pennec, Y., Djafari-Rouhani, B.: Self-organized synchronization of mechanically coupled resonators based on optomechanics gain-loss balance. Phys. Rev. B 102(15), 155410 (2020). https://doi.org/10.1103/PhysRevB.102.155410

    Article  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

PD contributed to conceptualization, investigation, and writing. JYE contributed to formal analysis and writing. SGNE contributed to supervision, writing, and validation.

Corresponding author

Correspondence to Philippe Djorwe.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Djorwe, P., Yves Effa, J. & G. Nana Engo, S. Hidden attractors and metamorphoses of basin boundaries in optomechanics. Nonlinear Dyn 111, 5905–5917 (2023). https://doi.org/10.1007/s11071-022-08139-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-022-08139-2

Keywords

Navigation