Skip to main content
Log in

Dynamical analysis of a multiple time delays FitzHugh–Nagumo neuron system with chemical and electrical coupling

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

A multiple time delays FitzHugh–Nagumo (FHN) neuron system with chemical and electrical coupling is presented in this paper. Both the coupled FHN neuron systems without and with time delays are studied in detail. Firstly, the number, stability and position of equilibria of the FHN neuron system without time delay varying with the strength of chemical and electrical coupling are investigated. Secondly, under two different electrical coupling strengths, the different effects of the chemical coupling strength on the bifurcation of equilibria of the FHN neuron system without time delay are given. In particular, the codimension 2 bifurcation analysis of the FHN neuron system without time delay shows a rich bifurcation behavior of limit cycles. Furthermore, the local stability of trivial equilibrium point of the coupled FHN neuron system with delays is studied by characteristic equation method. The system exhibits a stability switching through Hopf bifurcation under the influence of time delays. Finally, the delay-dependent stability region is obtained on the parameter plane of time delays using Hopf bifurcation curves. The intersecting points of Hopf bifurcation curves indicate that the system has Hopf–Hopf bifurcation points, and then we give the dynamic behavior of the system near one of them. The system exhibits the coexistence of multiple periodic orbits of different frequencies. At each stage of the paper, numerical simulation results are illustrated to verify the correctness of the theoretical analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data Availability

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. Arbib, M.A.: The Handbook of Brain Theory and Neural Networks. The MIT Press, Cambridge (2002)

    Book  Google Scholar 

  2. Korn, H., Faure, P.: Is there chaos in the brain II. Experimental evidence and related models. C. R. Biol. 326, 787–840 (2003)

    Article  Google Scholar 

  3. Ma, J., Tang, J.: A review for dynamics in neuron and neuronal network. Nonlinear Dyn. 89, 1569–1578 (2017)

    Article  MathSciNet  Google Scholar 

  4. FitzHugh, R.: Impulses and physiological states in theoretical models of nerve membrane. Biophys. J . 1, 445–466 (1961)

    Article  Google Scholar 

  5. Nagumo, J., Arimoto, S., Yoshizawa, S.: An active pulse transmission line simulating nerve axon. Proc. IRE 50, 2061–2070 (1962)

    Article  Google Scholar 

  6. Bautin, A.N.: Qualitative investigation of a particular nonlinear system. J. Appl. Math. Mec. 39, 606–615 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cubero, D., Baltanás, J.P., Casado-Pascual, J.: High-frequency effects in the FitzHugh–Nagumo neuron model. Phys. Rev. E 73, 061102 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  8. Faghih, R.T., Savla, K., Dahleh, M.A., Brown, E.N.: Broad range of neural dynamics from a time-varying FitzHugh–Nagumo model and its spiking threshold estimation. IEEE T. Bio-Med. Eng. 59, 816–823 (2011)

    Article  Google Scholar 

  9. Abbasian, A.H., Fallah, H., Razvan, M.R.: Symmetric bursting behaviors in the generalized FitzHugh–Nagumo model. Biol. Cybern. 107, 465–476 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  10. Zhu, J.J., Kong, C., Liu, X.B.: Subthreshold and suprathreshold vibrational resonance in the FitzHugh–Nagumo neuron model. Phys. Rev. E 94, 032208 (2016)

    Article  MathSciNet  Google Scholar 

  11. Tuckwell, H.C., Rodriguez, R.: Analytical and simulation results for stochastic Fitzhugh–Nagumo neurons and neural networks. J. Comput. Neurosci. 5, 91–113 (1998)

    Article  MATH  Google Scholar 

  12. Tuckwell, H.C., Rodriguez, R., Wan, F.Y.M.: Determination of firing times for the stochastic Fitzhugh–Nagumo neuronal model. Neural Comput. 15, 143–159 (2003)

    Article  MATH  Google Scholar 

  13. Gong, P.L., Xu, J.X.: Global dynamics and stochastic resonance of the forced FitzHugh–Nagumo neuron model. Phys. Rev. E 63, 031906 (2001)

    Article  Google Scholar 

  14. Pinto, R.D., Varona, P., Volkovskii, A.R., et al.: Synchronous behavior of two coupled electronic neurons. Phys. Rev. E 62, 2644–2656 (2000)

    Article  Google Scholar 

  15. Zhou, P., Zhang, X.F., Ma, J.: How to wake up the electric synapse coupling between neurons? Nonlinear Dyn. 108, 1681–1695 (2022)

    Article  Google Scholar 

  16. Li, C.H., Yang, S.Y.: Effects of network structure on the synchronizability of nonlinearly coupled Hindmarsh–Rose neurons. Phys. Lett. A 379, 2541–2548 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  17. Galarreta, M., Hestrin, S.: Electrical and chemical synapses among parvalbumin fast-spiking GABAergic interneurons in adult mouse neocortex. P. Natl. Acad. Sci. 99, 12438–12443 (2002)

    Article  Google Scholar 

  18. Greengard, P.: The neurobiology of slow synaptic transmission. Science 294, 1024–1030 (2001)

    Article  Google Scholar 

  19. Wei, J.J., Velarde, M.G.: Bifurcation analysis and existence of periodic solutions in a simple neural network with delays. Chaos 14, 940–953 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  20. Swadlow, H.A., Waxman, S.G.: Axonal conduction delays. Scholarpedia 7, 1451 (2012)

    Article  Google Scholar 

  21. Dhamala, M., Jirsa, V.K., Ding, M.: Enhancement of neural synchrony by time delay. Phys. Rev. Lett. 92, 074104 (2004)

    Article  Google Scholar 

  22. Timme, M., Wolf, F., Geisel, T.: Coexistence of regular and irregular dynamics in complex networks of pulse-coupled oscillators. Phys. Rev. Lett. 89, 258701 (2002)

    Article  Google Scholar 

  23. He, Y., Dagher, A., Chen, Z., et al.: Impaired small-world efficiency in structural cortical networks in multiple sclerosis associated with white matter lesion load. Brain 132, 3366–3379 (2009)

    Article  Google Scholar 

  24. Rouach, N., Avignone, E., Meme, W., et al.: Gap junctions and connexin expression in the normal and pathological central nervous system. Biol. Cell 94, 457–475 (2002)

    Article  Google Scholar 

  25. Palop, J.J., Chin, J., Mucke, L.: A network dysfunction perspective on neurodegenerative diseases. Nature 443, 768–773 (2006)

    Article  Google Scholar 

  26. Song, Z.G., Xu, J.: Stability switches and multistability coexistence in a delay-coupled neural oscillators system. J. Theor. Biol. 313, 98–114 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  27. Song, Z.G., Xu, J.: Stability switches and Bogdanov–Takens bifurcation in an inertial two-neuron coupling system with multiple delays. Sci. China Technol. Sc. 57, 893–904 (2014)

    Article  Google Scholar 

  28. Song, Z.G., Qian, W.G., Zhen, B., Kong, X.G.: Multiple bifurcations and periodic coexistence in a delayed Hopfield two-neural system with a monotonic activation function. Adv. Differ. Equ. 2019, 1–18 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  29. Song, Z.G., Wang, C.H., Zhen, B.: Codimension-two bifurcation and multistability coexistence in an inertial two-neuron system with multiple delays. Nonlinear Dyn. 85, 2099–2113 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  30. Song, Z.G., Zhen, B., Hu, D.P.: Multiple bifurcations and coexistence in an inertial two-neuron system with multiple delays. Cogn. Neurodyn. 14, 359–374 (2020)

    Article  Google Scholar 

  31. Yao, S.W., Ding, D.L., Song, Z.G., Xu, J.Q.: Two bifurcation routes to multiple chaotic coexistence in an inertial two-neural system with time delay. Nonlinear Dyn. 95, 1549–1563 (2019)

    Article  MATH  Google Scholar 

  32. Mao, X.C., Zhou, X.Y., Shi, T.T., Qiao, L.: Dynamical analysis of coupled bidirectional FitzHugh–Nagumo neuronal networks with multiple delays. J. Comput. Nonlin. Dyn. 14, 061002 (2019)

    Article  Google Scholar 

  33. Fan, D.J., Hong, L.: Hopf bifurcation analysis in a synaptically coupled FHN neuron model with delays. J. Comput. Nonlin. Dyn. 15, 1873–1886 (2010)

    MathSciNet  MATH  Google Scholar 

  34. Yao, S.W., Tu, H.N.: Stability switches and Hopf bifurcation in a coupled FitzHugh–Nagumo neural system with multiple delays. Abstr. Appl. Anal. 2014, 1–13 (2014)

    MathSciNet  MATH  Google Scholar 

  35. Hao, Y.H., Gong, Y.B., Wang, L., et al.: Single or multiple synchronization transitions in scale-free neuronal networks with electrical or chemical coupling. Chaos Soliton Fract. 44, 260–268 (2011)

    Article  MathSciNet  Google Scholar 

  36. Ma, J., Yang, Z.Q., Yang, L.J., Tang, J.: A physical view of computational neurodynamics. J. Zhejiang Univ-Sci. A 20, 639–659 (2019)

    Article  Google Scholar 

  37. Xie, Y., Yao, Z., Ma, J.: Phase synchronization and energy balance between neurons. Front. Inform. Tech. El. Eng. 23, 1407–1420 (2022)

    Article  Google Scholar 

  38. Wang, C.N., Sun, G.P., Yang, F.F., Ma, J.: Capacitive coupling memristive systems for energy balance. Int. J. Electron. Commun. (AEÜ) 153, 154280 (2022)

    Article  Google Scholar 

  39. Xie, Y., Zhou, P., Ma, J.: Energy balance and synchronization via inductive-coupling in functional neural circuits. Appl. Math. Model. 113, 175–187 (2023)

    Article  MathSciNet  MATH  Google Scholar 

  40. Kakiuchi, N., Tchizawa, K.: On an explicit duck solution and delay in the Fitzhugh–Nagumo equation. J. Differ. Equ. 141, 327–339 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  41. Balenzuela, P., García-Ojalvo, J.: Role of chemical synapses in coupled neurons with noise. Phys. Rev. E 72, 021901 (2005)

    Article  Google Scholar 

  42. Goetze, F., Lai, P.Y.: Dynamics of synaptically coupled FitzHugh–Nagumo neurons. Chinese J. Phys. 77, 1365–1380 (2022)

    Article  MathSciNet  Google Scholar 

  43. Li, K.X., Bao, H., Li, H.Z., Ma, J., et al.: Memristive Rulkov neuron model with magnetic induction effects. IEEE T. Ind. Inform. 18, 1726–1736 (2022)

    Article  Google Scholar 

  44. Shi, X., Lu, Q.S.: Burst synchronization of electrically and chemically coupled map-based neurons. Phys. A 388, 2410–2419 (2009)

  45. Elson, R.C., Selverston, A.I., Huerta, R., et al.: Synchronous behavior of two coupled biological neurons. Phys. Rev. Lett. 81, 5692–5695 (1998)

  46. Wu, Y., Xu, J.X., Jin, W.Y.: Synchronous behaviors of two coupled neurons. Neural Networks (ISNN 2005). Lecture Notes in Computer Science AdvancesLecture Notes in Computer Science AdvancesLecture Notes in Computer Science Advances 3496, 121130 (2005)

    MATH  Google Scholar 

  47. Kuznetsov, Y.A.: Elements of Applied Bifurcation Theory. Springer Science & Business Media, New York (2013)

    Google Scholar 

  48. Cheng, L.F., Cao, H.J., Zhang, L.T.: Two-parameter bifurcation analysis of an aircraft nose landing gear model. Nonlinear Dyn. 103, 367–381 (2021)

    Article  Google Scholar 

  49. Cheng, L.F., Wei, X.K., Cao, H.J.: Two-parameter bifurcation analysis of limit cycles of a simplified railway wheelset model. Nonlinear Dyn. 93, 2415–2431 (2018)

    Article  MATH  Google Scholar 

  50. Dhooge, A., Govaerts, W., Kuznetsov, Y.A.: MATCONT: a MATLAB package for numerical bifurcation analysis of ODEs. ACM Trans. Math. Softw. (TOMS) 29, 141–164 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  51. Guckenheimer, J., Holmes, P.: Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Springer Science & Business Media, New York (2013)

    MATH  Google Scholar 

  52. Strogatz, S.H.: Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering. CRC Press, Boca Raton (2018)

  53. Campbell, S.A.: Calculating Centre Manifolds for Delay Differential Equations Using Maple. Springer, New York (2009)

    Book  Google Scholar 

  54. Engelborghs, K.: DDE-BIFTOOL: A Matlab Package for Bifurcation Analysis of Delay Differential Equations. TW Report 305, Department of Computer Science, Katholieke Universiteit Leuven, Belgium (2000)

  55. Hu, D.P., Cao, H.J.: Stability and Hopf bifurcation analysis in Hindmarsh–Rose neuron model with multiple time delays. Int. J. Bifurcat. Chaos 26, 1650187 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  56. Milton, J.G.: Epilepsy as a dynamic disease: a tutorial of the past with an eye to the future. Epilepsy Behav. 18, 33–44 (2010)

    Article  Google Scholar 

Download references

Funding

This work is supported by NSF of Shandong Province (ZR2021MA016), National Natural Science of China(12172212), China Postdoctoral Science Foundation (2019M652349) and the Youth Creative Team Sci-Tech Program of Shandong Universities(2019KJI007).

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to the writing of this paper. The authors read and approved the final manuscript.

Corresponding author

Correspondence to Xuexue Liu.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interests regarding the publication of this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, D., Yu, X., Song, Z. et al. Dynamical analysis of a multiple time delays FitzHugh–Nagumo neuron system with chemical and electrical coupling. Nonlinear Dyn 111, 5833–5857 (2023). https://doi.org/10.1007/s11071-022-08129-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-022-08129-4

Keywords

Navigation