Skip to main content
Log in

Multiple-peak and multiple-ring solitons in the nonlinear Schrödinger equation with inhomogeneous self-defocusing nonlinearity

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

We prove that inhomogeneous defocusing cubic (Kerr) nonlinear media described by the nonlinear Schrödinger equation, which could be realized in the experiments of Bose–Einstein condensates or nonlinear optics, can support various types of one-dimensional (1D) multiple-peak and two-dimensional (2D) multiple-ring solitons, both with equal intensity peaks. The profiles of such equal-peak structures are determined by the parameters describing nonlinearity, and their relationship is clearly presented. Interestingly, the number of 1D equal peaks can be any positive odd natural number, and one of the 2D equal-annular-peak rings can be arbitrary positive integer, as long as the parameters of nonlinearity are set appropriately. It should be mentioned that the expressions on how to calculate the number of equal peaks are found phenomenologically but are clearly displayed. Besides fundamental modes, such nonlinear media can also support 2D vortical modes whose stability and instability domains appear alternately and are verified by the linear stability analysis and direct numerical simulations, which is in contrast to their fundamental nonvortical counterparts that are completely stable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The datasets generated during and analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Kivshar, Y.S., Malomed, B.A.: Dynamics of solitons in nearly integrable systems. Rev. Mod. Phys. 61, 763–915 (1989)

    Article  Google Scholar 

  2. Malomed, B.A., Mihalache, D., Wise, F., Torner, L.: Spatiotemporal optical solitons. J. Opt. B 7, R53–R72 (2005)

    Article  Google Scholar 

  3. Kartashov, Y.V., Malomed, B.A., Torner, L.: Solitons in nonlinear lattices. Rev. Mod. Phys. 83, 247–305 (2011)

    Article  Google Scholar 

  4. Leblond, H., Mihalache, D.: Models of few optical cycle solitons beyond the slowly varying envelope approximation. Phys. Rep. 523, 61–126 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  5. Konotop, V.V., Yang, J., Zezyulin, D.A.: Nonlinear waves in \(\cal{PT} \)-symmetric systems. Rev. Mod. Phys. 88, 035002 (2016)

    Article  Google Scholar 

  6. Malomed, B.A., Mihalache, D.: Nonlinear waves in optical and matter-wave media: a topical survey of recent theoretical and experimental results. Rom. J. Phys. 64, 106 (2019)

    Google Scholar 

  7. Kartashov, Y.V., Astrakharchik, G.E., Malomed, B.A., Torner, L.: Frontiers in multidimensional self-trapping of nonlinear fields and matter. Nat. Rev. Phys. 1, 185–197 (2019)

    Article  Google Scholar 

  8. Mihalache, D.: Localized structures in optical and matter-wave media: a selection of recent studies. Rom. Rep. Phys. 73, 403 (2021)

    Google Scholar 

  9. Malomed, B.A.: Optical solitons and vortices in fractional media: a mini-review of recent results. Photonics 8, 353 (2021)

    Article  Google Scholar 

  10. Malomed, B.A.: Multidimensional Solitons. AIP Publishing, Woodbury (2022)

    Book  Google Scholar 

  11. Wang, Q., Deng, Z.Z.: Controllable propagation path of imaginary value off-axis vortex soliton in nonlocal nonlinear media. Nonlinear Dyn. 100, 1589–1598 (2020)

    Article  Google Scholar 

  12. Wang, Q., Yang, J.R., Liang, G.: Controllable soliton transition and interaction in nonlocal nonlinear media. Nonlinear Dyn. 101, 1169–1179 (2020)

    Article  Google Scholar 

  13. Zhu, X., Peng, X., Qiu, Y., Wang, H., He, Y.: Nonlocal solitons supported by non-parity-time-symmetric complex potentials. New J. Phys. 22, 033035 (2020)

    Article  MathSciNet  Google Scholar 

  14. Zeng, L., Konotop, V.V., Lu, X., Cai, Y., Zhu, Q., Li, J.: Localized modes and dark solitons sustained by nonlinear defects. Opt. Lett. 46, 2216–2219 (2021)

    Article  Google Scholar 

  15. Zeng, L., Mihalache, D., Malomed, B.A., Lu, X., Cai, Y., Zhu, Q., Li, J.: Families of fundamental and multipole solitons in a cubic-quintic nonlinear lattice in fractional dimension. Chaos Solitons Fract. 144, 110589 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  16. Li, P., Li, R., Dai, C.: Existence, symmetry breaking bifurcation and stability of two-dimensional optical solitons supported by fractional diffraction. Opt. Express 29, 3193–3210 (2021)

    Article  Google Scholar 

  17. Zeng, L., Malomed, B.A., Mihalache, D., Cai, Y., Lu, X., Zhu, Q., Li, J.: Bubbles and W-shaped solitons in Kerr media with fractional diffraction. Nonlinear Dyn. 104, 4253–4264 (2021)

    Article  Google Scholar 

  18. Zhou, Q., Triki, H., Xu, J., Zeng, Z., Liu, W., Biswas, A.: Perturbation of chirped localized waves in a dual-power law nonlinear medium. Chaos Solitons Fract. 160, 112198 (2022)

    Article  MathSciNet  Google Scholar 

  19. Zhou, Q.: Influence of parameters of optical fibers on optical soliton interactions. Chin. Phys. Lett. 39, 010501 (2022)

    Article  Google Scholar 

  20. Ding, C.C., Zhou, Q., Triki, H., Hu, Z.H.: Interaction dynamics of optical dark bound solitons for a defocusing Lakshmanan-Porsezian-Daniel equation. Opt. Express 30, 40712–40727 (2022)

    Article  Google Scholar 

  21. Spinelli, L., Tissoni, G., Brambilla, M., Prati, F., Lugiato, L.A.: Spatial solitons in semiconductor microcavities. Phys. Rev. A 58, 2542–2559 (1998)

    Article  Google Scholar 

  22. Yulin, A.V., Egorov, O.A., Lederer, F., Skryabin, D.V.: Dark polariton solitons in semiconductor microcavities. Phys. Rev. A 78, 061801 (2008)

    Article  Google Scholar 

  23. Leblond, H., Veerakumar, V.: Magnetostatic spin solitons in ferromagnetic nanotubes. Phys. Rev. B 70, 134413 (2004)

    Article  Google Scholar 

  24. Ustinov, A.B., Kalinikos, B.A., Demidov, V.E., Demokritov, S.O.: Formation of gap solitons in ferromagnetic films with a periodic metal grating. Phys. Rev. B 81, 180406 (2010)

    Article  Google Scholar 

  25. Tanaka, Y.: Soliton in two-band superconductor. Phys. Rev. Lett. 88, 017002 (2001)

    Article  Google Scholar 

  26. Garaud, J., Carlström, J., Babaev, E.: Topological solitons in three-band superconductors with broken time reversal symmetry. Phys. Rev. Lett. 107, 197001 (2011)

    Article  Google Scholar 

  27. Bagnato, V.S., Frantzeskakis, D.J., Kevrekidis, P.G., Malomed, B.A., Mihalache, D.: Bose-Einstein condensation: twenty years after. Rom. Rep. Phys. 67, 5–50 (2015)

    Google Scholar 

  28. Zeng, L., Zeng, J.: Gap-type dark localized modes in a Bose-Einstein condensate with optical lattices. Adv. Photon. 1, 046004 (2019)

    Article  Google Scholar 

  29. Yang, Z.J., Zhang, S.M., Li, X.L., Pang, Z.G., Bu, H.X.: High-order revivable complex-valued hyperbolic-sine-Gaussian solitons and breathers in nonlinear media with a spatial nonlocality. Nonlinear Dyn. 94, 2563–2573 (2018)

    Article  Google Scholar 

  30. Song, L.M., Yang, Z.J., Li, X.L., Zhang, S.M.: Coherent superposition propagation of LaguerreCGaussian and HermiteCGaussian solitons. Appl. Math. Lett. 102, 106114 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  31. Shen, S., Yang, Z., Li, X., Zhang, S.: Periodic propagation of complex-valued hyperbolic-cosine-Gaussian solitons and breathers with complicated light field structure in strongly nonlocal nonlinear media. Commun. Nonlinear Sci. Numer. Simulat. 103, 106005 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  32. Shen, S., Yangs, Z.J., Pang, Z.G., Ge, Y.R.: The complex-valued astigmatic cosine-Gaussian soliton solution of the nonlocal nonlinear Schrödinger equation and its transmission characteristics. Appl. Math. Lett. 125, 107755 (2022)

    Article  MATH  Google Scholar 

  33. Guo, J.L., Yang, Z.J., Song, L.M., Pang, Z.G.: Propagation dynamics of tripole breathers in nonlocal nonlinear media. Nonlinear Dyn. 101, 1147–1157 (2020)

    Article  Google Scholar 

  34. Bergé, L.: Wave collapse in physics: principles and applications to light and plasma waves. Phys. Rep. 303, 259–370 (1998)

    Article  MathSciNet  Google Scholar 

  35. Kuznetsov, E.A., Dias, F.: Bifurcations of solitons and their stability. Phys. Rep. 507, 43–105 (2011)

    Article  MathSciNet  Google Scholar 

  36. Fibich, G.: The Nonlinear Schrödinger Equation: Singular Solutions and Optical Collapse. Springer, Heidelberg (2015)

    Book  MATH  Google Scholar 

  37. Li, P., Dai, C., Li, R., Gao, Y.: Symmetric and asymmetric solitons supported by a \(\cal{PT} \)-symmetric potential with saturable nonlinearity: bifurcation, stability and dynamics. Opt. Express 26, 6949–6961 (2018)

    Article  Google Scholar 

  38. Zeng, L., Zeng, J.: Preventing critical collapse of higher-order solitons by tailoring unconventional optical diffraction and nonlinearities. Commun. Phys. 3, 26 (2020)

    Article  Google Scholar 

  39. Zeng, L., Shi, J., Lu, X., Cai, Y., Zhu, Q., Chen, H., Long, H., Li, J.: Stable and oscillating solitons of \(\cal{PT} \)-symmetric couplers with gain and loss in fractional dimension. Nonlinear Dyn. 103, 1831–1840 (2021)

    Article  Google Scholar 

  40. Zhu, X., Liao, S., Cai, Z., Qiu, Y., He, Y.: Solitons in Kerr media with two-dimensional non-parity-time-symmetric complex potentials. Chaos Solitons Fract. 146, 110837 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  41. Zhu, X., Cai, Z., Liu, J., Liao, S., He, Y.: Spatial solitons in non-parity-time-symmetric complex potentials with competing cubic-quintic nonlinearities. Nonlinear Dyn. 108, 2563–2572 (2022)

    Article  Google Scholar 

  42. Zeng, L., Belić, M.R., Mihalache, D., Shi, J., Li, J., Li, S., Lu, X., Cai, Y., Li, J.: Families of gap solitons and their complexes in media with saturable nonlinearity and fractional diffraction. Nonlinear Dyn. 108, 1671–1680 (2022)

    Article  Google Scholar 

  43. Zeng, L., Zhu, Y., Malomed, B.A., Mihalache, D., Wang, Q., Long, H., Cai, Y., Lu, X., Li, J.: Quadratic fractional solitons. Chaos Solitons Fract. 154, 111586 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  44. Baizakov, B.B., Malomed, B.A., Salerno, M.: Matter-wave solitons in radially periodic potentials. Phys. Rev. E 74, 066615 (2006)

    Article  MathSciNet  Google Scholar 

  45. Zhong, W.P., Belić, M.: Resonance solitons produced by azimuthal modulation in self-focusing and self-defocusing materials. Nonlinear Dyn. 73, 2091–2102 (2013)

    Article  MathSciNet  Google Scholar 

  46. Kartashov, Y.V., Vysloukh, V.A., Torner, L.: Stable ring-profile vortex solitons in Bessel optical lattices. Phys. Rev. Lett. 94, 043902 (2005)

    Article  Google Scholar 

  47. Kartashov, Y.V., Egorov, A.A., Vysloukh, V.A., Torner, L.: Rotary dipole-mode solitons in Bessel optical lattices. J. Opt. B 6, 444–447 (2004)

    Article  Google Scholar 

  48. Kartashov, Y.V., Carretero-González, R., Malomed, B.A., Vysloukh, V.A., Torner, L.: Multipole-mode solitons in Bessel optical lattices. Opt. Express 13, 10703–10710 (2005)

    Article  Google Scholar 

  49. Mihalache, D., Mazilu, D., Lederer, F., Malomed, B.A., Kartashov, Y.V., Crasovan, L.-C., Torner, L.: Stable spatiotemporal solitons in Bessel optical lattices. Phys. Rev. Lett. 95, 023902 (2005)

    Article  Google Scholar 

  50. Dong, L., Wang, J., Wang, H., Yin, G.: Broken ring solitons in Bessel optical lattices. Opt. Lett. 33, 2989–2991 (2008)

    Article  Google Scholar 

  51. Kartashov, Y.V., Torner, L., Vysloukh, V.A.: Composite vortex-ring solitons in Bessel photonic lattices. J. Opt. Soc. Am. B 22, 1366–1370 (2005)

    Article  Google Scholar 

  52. Huang, C., Lyu, L., Huang, H., Chen, Z., Fu, S., Tan, H., Malomed, B.A., Li, Y.: Dipolar bright solitons and solitary vortices in a radial lattice. Phys. Rev. A 96, 053617 (2017)

    Article  Google Scholar 

  53. Aleksić, N.B., Strinić, A.I., Petroski, M.M., Petrović, M.S.: Necklace beams in media with cubic-quintic nonlinearity. Opt. Quant. Electron. 52, 73 (2020)

    Article  Google Scholar 

  54. Borovkova, O.V., Kartashov, Y.V., Malomed, B.A., Torner, L.: Algebraic bright and vortex solitons in defocusing media. Opt. Lett. 36, 3088–3090 (2011)

    Article  Google Scholar 

  55. Borovkova, O.V., Kartashov, Y.V., Torner, L., Malomed, B.A.: Bright solitons from defocusing nonlinearities. Phys. Rev. E 84, 035602 (2011)

    Article  Google Scholar 

  56. Lobanov, V.E., Borovkova, O.V., Kartashov, Y.V., Malomed, B.A., Torner, L.: Stable bright and vortex solitons in photonic crystal fibers with inhomogeneous defocusing nonlinearity. Opt. Lett. 37, 1799–1801 (2012)

    Article  Google Scholar 

  57. Driben, R., Meier, T., Malomed, B.A.: Creation of vortices by torque in multidimensional media with inhomogeneous defocusing nonlinearity. Sci. Rep. 5, 9420 (2015)

    Article  Google Scholar 

  58. Kartashov, Y.V., Vysloukh, V.A., Torner, L., Malomed, B.A.: Self-trapping and splitting of bright vector solitons under inhomogeneous defocusing nonlinearities. Opt. Lett. 36, 4587–4589 (2011)

    Article  Google Scholar 

  59. Kartashov, Y.V., Lobanov, V.E., Malomed, B.A., Torner, L.: Asymmetric solitons and domain walls supported by inhomogeneous defocusing nonlinearity. Opt. Lett. 37, 5000–5002 (2012)

    Article  Google Scholar 

  60. Driben, R., Dror, N., Malomed, B.A., Meier, T.: Multipoles and vortex multiplets in multidimensional media with inhomogeneous defocusing nonlinearity. New J. Phys. 17, 083043 (2015)

    Article  MATH  Google Scholar 

  61. Zeng, L., Zeng, J.: Modulated solitons, soliton and vortex clusters in purely nonlinear defocusing media. Ann. Phys. 421, 168284 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  62. Kartashov, Y.V., Malomed, B.A., Vysloukh, V.A., Belić, M.R., Torner, L.: Rotating vortex clusters in media with inhomogeneous defocusing nonlinearity. Opt. Lett. 42, 446–449 (2017)

    Article  Google Scholar 

  63. Driben, R., Kartashov, Y.V., Malomed, B.A., Meier, T., Torner, L.: Three-dimensional hybrid vortex solitons. New J. Phys. 16, 063035 (2014)

    Article  MathSciNet  Google Scholar 

  64. Zeng, L., Zeng, J., Kartashov, Y.V., Malomed, B.A.: Purely Kerr nonlinear model admitting flat-top solitons. Opt. Lett. 44, 1206–1209 (2019)

    Article  Google Scholar 

  65. Zeng, L., Zeng, J.: Gaussian-like and flat-top solitons of atoms with spatially modulated repulsive interactions. J. Opt. Soc. Am. B 36, 2278–2284 (2019)

    Article  Google Scholar 

  66. Driben, R., Kartashov, Y.V., Malomed, B.A., Meier, T., Torner, L.: Soliton gyroscopes in media with spatially growing repulsive nonlinearity. Phys. Rev. Lett. 112, 020404 (2014)

    Article  Google Scholar 

  67. Kartashov, Y.V., Malomed, B.A., Shnir, Y., Torner, L.: Twisted toroidal vortex solitons in inhomogeneous media with repulsive nonlinearity. Phys. Rev. Lett. 113, 264101 (2014)

    Article  Google Scholar 

  68. Zeng, L., Malomed, B.A., Mihalache, D., Cai, Y., Lu, X., Zhu, Q., Li, J.: Flat-floor bubbles, dark solitons, and vortices stabilized by inhomogeneous nonlinear media. Nonlinear Dyn. 106, 815–830 (2021)

    Article  Google Scholar 

  69. Vakhitov, M., Kolokolov, A.: Stationary solutions of the wave equation in a medium with nonlinearity saturation. Radiophys. Quantum Electron. 16, 783–789 (1973)

    Article  Google Scholar 

  70. Sakaguchi, H., Malomed, B.A.: Solitons in combined linear and nonlinear lattice potentials. Phys. Rev. A 81, 013624 (2010)

    Article  Google Scholar 

Download references

Funding

Funding was provided by National Natural Science Foundation of China (62205224, 11774068); Guangdong Province Education Department Foundation of China (2018KZDXM044); Qatar National Research Fund (NPRP 12S-0205-190047); and Meizhou City Social Development Science and Technology Plan Project (2021B127).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xing Zhu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, L., Zhu, X., Belić, M.R. et al. Multiple-peak and multiple-ring solitons in the nonlinear Schrödinger equation with inhomogeneous self-defocusing nonlinearity. Nonlinear Dyn 111, 5671–5680 (2023). https://doi.org/10.1007/s11071-022-08110-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-022-08110-1

Keywords

Navigation