Skip to main content
Log in

Dynamics of excited piecewise linear oscillators

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The current work is devoted to the analytical study of the dynamics of piecewise linear (PWL) oscillators subjected to various types of excitations. Straightforward analytical study of the response of this class of strongly nonlinear oscillators is rather complex, as it requires the computation of time instants of transitions from one linear state to another. This difficulty is commonly overcome by using the averaging procedure. In the present study, we devise an averaging method which naturally fits to the analysis of a general class of resonantly forced PWL systems with zero offset. This method is based on introduction of non-analytic PWL basis functions with corresponding algebra thereby enabling the application of direct averaging method to the resonantly forced, strongly nonlinear PWL oscillators (PWLOs). We demonstrate the efficiency of the considered averaging method for the three different cases of forced PWLOs. We first consider the PWL Mathieu equation and asymptotically obtain the relatively simple analytical expressions for the transition curves corresponding to the most significant family of m:1 sub-harmonic resonances for both damped and undamped cases. The second dynamical system considered herein is a PWL Van der Pol oscillator. In this example, we use the derived averaged model to explore the effect of asymmetry parameter on the limit cycle oscillations. As a final example, we consider an externally forced PWL Duffing oscillator to illustrate the effect of stiffness asymmetry parameter on its resonance curves. Results of the analysis for all the three considered models show a fairly good correspondence with the numerical simulations of the model within the limit of asymptotic validity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Data availability

Enquiries about data availability should be directed to the authors.

References

  1. Wiercigroch, M.: Chaotic vibration of a simple model of the machine tool-cutting process system. J. Vib. Acoust. 119, 468–475 (1997)

    Article  Google Scholar 

  2. Davies, M.A., Balachandran, B.: Impact dynamics in milling of thin-walled structures. Nonlinear Dyn. 22, 375–392 (2000)

    Article  MATH  Google Scholar 

  3. Chati, M., Rand, R., Mukherjee, S.: Modal analysis of a cracked beam. J. Sound Vib. 207(2), 249–270 (1997)

    Article  MATH  Google Scholar 

  4. Shen, M.H.H., Pierre, C.: Natural modes of Bernoulli–Euler beams with symmetric cracks. J. Sound Vib. 138, 115–134 (1990)

    Article  Google Scholar 

  5. Ostachowicz, W.M., Krawczuk, M.: Analysis of the effect of cracks on the natural frequencies of a cantilever beam. J. Sound Vib. 150, 191–201 (1991)

    Article  Google Scholar 

  6. Chu, Y.C., Shen, H.H.: Analysis of forced bilinear oscillators and the application to cracked beam dynamics. AIAA J. 10, 2512–2519 (1992)

    Article  MATH  Google Scholar 

  7. Andreaus, U., Casini, P., Vestroni, F.: Non-linear dynamics of a cracked cantilever beam under harmonic excitation. Int. J. Non-Linear Mech. 42, 566–575 (2007)

    Article  Google Scholar 

  8. Doole, S.H., Hogan, S.J.: A piecewise linear suspension bridge model: Nonlinear dynamics and orbit continuation. Dyn. Stab. Syst. 11, 19–47 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  9. Dyskin, A.V., Pasternak, E., Pelinovsky, E.: Modelling resonances in topological interlocking structures. In: Fifth Australasian Congress on Applied Mechanics, ACAM 2007, Brisbane (2007)

  10. Dyskin, A.V., Pasternak, E., Estrin, Y.: Mortarless structures based on topological interlocking. Front. Struct. Civ. Eng. 6(2), 188–197 (2012)

    Google Scholar 

  11. Andreaus, U., Angelis, M.D.: Nonlinear dynamic response of a base-excited SDOF oscillator with double-side unilateral constraints. Nonlinear Dyn. 84(3), 1447–1467 (2016)

    Article  Google Scholar 

  12. Andreaus, U., Baragatti, P., Angelis, M.D., Perno, S.: Shaking table tests and numerical investigation of two-sided damping constraint for end-stop impact protection. Nonlinear Dyn. 90(4), 2387–2421 (2017)

    Article  Google Scholar 

  13. Andreaus, U., Baragatti, P., Angelis, M.D., Perno, S.: A preliminary experimental study about two-sided impacting SDOF oscillator under harmonic excitation. J. Comput. Nonlinear Dyn. 12(6), 061010 (2017)

    Article  Google Scholar 

  14. Andreaus, U., Angelis, M.D.: Experimental and numerical dynamic response of a SDOF vibro impact system with double gaps and bumpers under harmonic excitation. Int. J. Dyn. Control 7, 1278–1292 (2019)

    Article  Google Scholar 

  15. Andreaus, U., Angelis, M.D.: Influence of the characteristics of isolation and mitigation devices on the response of SDOF vibro-impact systems with two-sided bumpers and gaps via shaking table tests. Struct. Control Health Monit. 27(5), 1–21 (2020)

    Article  Google Scholar 

  16. Stefani, G., Angelis, M.D., Andreaus, U.: Influence of the gap size on the response of a single-degree-of-freedom vibro-impact system with two-sided constraints: experimental tests and numerical modeling. Int. J. Mech. Sci. 206, 1–16 (2021)

    Article  Google Scholar 

  17. Stefani, G., Angelis, M.D., Andreaus, U.: Scenarios in the experimental response of a vibro-impact single-degree-of-freedom system and numerical simulations. Nonlinear Dyn. 103, 3465–3488 (2021)

    Article  MATH  Google Scholar 

  18. Stefani, G., Angelis, M.D., Andreaus, U.: The effect of the presence of obstacles on the dynamic response of single-degree-of-freedom systems: study of the scenarios aimed at vibration control. J. Sound Vib. 531(116949), 1–21 (2022)

    Google Scholar 

  19. Stefani, G., DeAngelis, M., Andreaus, U.: Numerical study on the response scenarios in a vibro-impact single-degree-of-freedom oscillator with two unilateral dissipative and deformable constraints. Commun. Nonlinear Sci. Numer. Simul. 99, 1–30 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  20. Maezawa, S.: Superharmonic resonance in pieceise linear systems with unsymmetrical characteristics. In: 5th International Conference on Nonlinear Oscillations, Kiev (1969)

  21. Maezewa, S., Kumano, H., Minakuchi, Y.: Forced vibrations in an unsymmetric piecewise linear system excited by general periodic force functions. Bull. Jpn. Soc. Mech. Eng. 23(175), 68–75 (1980)

    Article  Google Scholar 

  22. Thompson, J.M.T., Bokaian, A.R., Ghaffari, R.: Subharmonic resonances and chaotic motions of a bilinear oscillator. IMA J. Appl. Math. 31, 207–234 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  23. Shaw, S.W., Holmes, P.J.: A periodically forced piecewise linear oscillator. J. Sound Vib. 90(1), 129–155 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  24. Natsiavas, S.: On the dynamics of oscillators with bi-linear damping and stiffness. Int. J. Non-Linear Mech. 25(5), 535–554 (1990)

    Article  MATH  Google Scholar 

  25. Shaw, S.W.: Forced vibrations of a beam with one-sided amplitude constraint: theory and experiment. J. Sound Vib. 99(2), 199–212 (1985)

    Article  Google Scholar 

  26. Ehrich, F.F.: Observations of sub-critical super-harmonic and chaotic responses. ASME J. Vib. Acoust. 114, 93–100 (1992)

    Article  Google Scholar 

  27. Theodossiades, S., Natsiavas, S.: Nonlinear dynamics of gear pair systems with periodic stiffness and backlash. J. Sound Vib. 229, 287–310 (2000)

    Article  Google Scholar 

  28. Natsiavas, S., Theodossiades, S., Goudas, I.: Dynamic analysis of piecewise linear oscillators with time periodic coefficients. Int. J. Non-Linear Mech. 35, 53–68 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  29. Marathe, A., Chatterjee, A.: Asymmetric Mathieu equation. Proc. R. Soc. A 462, 1643–1659 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  30. Jayaprakash, K.R., Starosvetsky, Y.: Analytical study of the transition curves in the bi-linear Mathieu equation. Nonlinear Dyn. 101(2), 1–13 (2020)

    Google Scholar 

  31. Kumar, A., Starosvetsky, Y.: Analysis of transition regions in the parametrically forced system of bi-linear oscillators: resonant excitation in the neighborhood of similar modes. J. Sound Vib. 515, 1–17 (2021)

    Article  Google Scholar 

  32. Gendelman, O.V., Sapsis, T.P.: Energy exchange and localization in essentially nonlinear oscillatory systems: canonical formalism. J. Appl. Mech. 84(011009), 1–9 (2017)

    Google Scholar 

  33. Bogoliubov, N.N., Mitropolsky, Y.A.: Asymptotic Methods in the Theory of Non-linear Oscillations. Gordon and Breach Science Publishers, New York (1961)

    Google Scholar 

  34. Nayfeh, A.H., Mook, D.T.: Nonlinear Oscillations. Wiley, New York (1995)

    Book  MATH  Google Scholar 

  35. Chatterjee, A.: Harmonic balance based averaging: approximate realizations of an asymptotic technique. Nonlinear Dyn. 32, 323–343 (2003)

    Article  MATH  Google Scholar 

  36. Kovacic, I., Rand, R.: Straight-line backbone curve. Commun. Nonlinear Sci. Numer. Simul. 18, 2281–2288 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  37. Iacono, R., Russo, F.: Class of solvable nonlinear oscillators with isochronous orbits. Phys. Rev. E 83, 027601 (2011)

    Article  Google Scholar 

  38. Stoker, J.J.: Nonlinear Vibrations in Mechanical and Electrical Systems. Wiley, New York (1950)

    MATH  Google Scholar 

  39. Cesari, L.: Asymptotic Behavior and Stability Problems in Ordinary Differential Equations. Springer, Berlin (1971)

    Book  MATH  Google Scholar 

  40. Kumar, A., Starosvetsky, Y., Jayaprakash, K.R.: Analysis of transition regions of bi-linear, parametrically driven, two-oscillator model: resonant excitation in the neighborhood of non-similar NNMs. Int. J. Non-Linear Mech. 145, 104074 (2022)

    Article  Google Scholar 

  41. Boyce, W.E., DiPrima, R.C.: Elementary Differential Equations and Boundary Value Problems. John Wiley, New Jersey (2009)

    MATH  Google Scholar 

  42. Guckenheimer, J., Holmes, P.: Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields. Springer, New York (1989)

    MATH  Google Scholar 

  43. Natsiavas, S.: Dynamics of piecewise linear oscillators with Van-der-Pol type damping. Int. J. Non-Linear Mech. 26(314), 349–366 (1991)

    Article  MATH  Google Scholar 

  44. Natsiavas, S.: Dynamics of multiple-degree-of-freedom oscillators with colliding components. J. Sound Vib. 165(3), 439–453 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  45. Lichtenberg, A.J., Lieberman, M.A.: Regular and Chaotic Dynamics. Springer, New York (1992)

    Book  MATH  Google Scholar 

Download references

Acknowledgements

KRJ and YS would like to acknowledge the support received through the SPARC project (Project Code: P483) funded by the MHRD, Government of India. YS would also like to acknowledge the support received by Israel Science Foundation (Grant number 1079/16).

Funding

SPARC project (Project Code: P483) funded by the MHRD, Government of India; Israel Science Foundation (Grant number 1079/16).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. R. Jayaprakash.

Ethics declarations

Conflict of interest

There are no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

The PWL function can be defined in terms of the Heaviside function in the form

$$ K\left( \psi \right) = H\left( {\left| \psi \right|} \right) + \left( {\delta - 1} \right) H\left( {\left| \psi \right| - \pi } \right) $$
(A1)

The generalized derivative of the function \(K\left( \psi \right)\) thus takes the form

$$ \begin{aligned} \frac{{{\text{d}}K\left( \psi \right)}}{{{\text{d}}\psi }} & = \left\{ {{\Delta }\left( {\left| \psi \right|} \right) + \left( {\delta - 1} \right){\Delta }\left( {\left| \psi \right| - \pi } \right)} \right\}\frac{{{\text{d}}\left| \psi \right|}}{{{\text{d}}\psi }} \\ & = \left\{ {{\Delta }\left( {\left| \psi \right|} \right) + \left( {\delta - 1} \right){\Delta }\left( {\left| \psi \right| - \pi } \right)} \right\}\\ & \times \left\{ {1 - T\mathop \sum \limits_{n = 1}^{\infty } {\Delta }\left( {\psi - nT} \right)} \right\} \\ & = {\Delta }\left( {\left| \psi \right|} \right) + \left( {\delta - 1} \right){\Delta }\left( {\left| \psi \right| - \pi } \right) \\ \end{aligned} $$
(A2)

where the function \(\left| \psi \right|\) and its derivative \(\left| \psi \right|\) is defined in the form

$$ \begin{aligned} \left| \psi \right| & = \bmod \left( {\psi ,T} \right) = \psi - T\mathop \sum \limits_{n = 1}^{\infty } H\left( {\psi - nT} \right) \\ \frac{{{\text{d}}\left| \psi \right|}}{{{\text{d}}\psi }} & = 1 - T\mathop \sum \limits_{n = 1}^{\infty } {\Delta }\left( {\psi - nT} \right) \\ \end{aligned} $$
(A3)

Appendix B

The averaging of the vector field (Eq. 10) reads,

$$ \begin{aligned} \dot{A}_{a} & = - \frac{\varepsilon A_{a}B}{{2T}}\left\{ {\mathop \int \limits_{0}^{\pi } \sin \left( {m\omega_{{{\text{pwl}}}} \left( {\psi - \theta_{{\text{a}}} } \right) + \varepsilon \sigma t} \right)\sin \left( {2\psi } \right){\text{d}}\psi } \right. \\ & \quad \left. { + \,\frac{1}{\delta }\mathop \int \limits_{\pi }^{T} \sin \left( {m\omega_{{{\text{pwl}}}} \left( {\psi - \theta_{{\text{a}}} } \right) + \varepsilon \sigma t} \right)\sin \left( {2\delta \psi + 2\rho } \right){\text{d}}\psi } \right\} \\ & \quad - \,\frac{\varepsilon \mu A_{a}}{T}\left\{ {\mathop \int \limits_{0}^{\pi } \cos^{2} \left( \psi \right){\text{d}}\psi + \mathop \int \limits_{\pi }^{T} \cos^{2} \left( {\delta \psi + \rho } \right){\text{d}}\psi } \right\} \\ & \quad = \, - \frac{\varepsilon A_{a}B}{{2T}}\left\{ {\mathop \int \limits_{0}^{\pi } \left\{ {\sin \left( {m\omega_{{{\text{pwl}}}} \left( {\psi - \theta_{{\text{a}}} } \right)} \right)\cos \left( {\varepsilon \sigma t} \right)} \right.} \right. \\ & \quad \left. { + \,\cos \left( {m\omega_{{{\text{pwl}}}} \left( {\psi - \theta_{{\text{a}}} } \right)} \right)\sin \left( {\varepsilon \sigma t} \right)} \right\}\sin \left( {2\psi } \right){\text{d}}\psi \\ & \quad + \,\frac{1}{\delta }\mathop \int \limits_{\pi }^{T} \left\{ {\sin \left( {m\omega_{{{\text{pwl}}}} \left( {\psi - \theta_{{\text{a}}} } \right)} \right)\cos \left( {\varepsilon \sigma t} \right)} \right. \\ & \quad \left. { + \,\cos \left( {m\omega_{{{\text{pwl}}}} \left( {\psi - \theta_{{\text{a}}} } \right)} \right)\sin \left( {\varepsilon \sigma t} \right)} \right\}\sin \left( {2\delta \psi + 2\rho } \right){\text{d}}\psi \\ & \quad - \,\frac{\varepsilon \mu A_{a}}{{2T}}\pi \left( {1 + \frac{1}{\delta }} \right) = \frac{\varepsilon A_{a}B}{T}\left\{ {\frac{{\sin \left( {m\omega_{{{\text{pwl}}}} \left( {\theta_{a} - \pi } \right) - \varepsilon \sigma t} \right) - \sin \left( {m\omega_{{{\text{pwl}}}} \theta_{a} - \varepsilon \sigma t} \right)}}{{m^{2} \omega_{{{\text{pwl}}}}^{2} - 4}}} \right. \\ & \quad \left. { + \,\frac{{\sin \left( {m\omega_{{{\text{pwl}}}} \left( {\theta_{a} - T} \right) - \varepsilon \sigma t} \right) - \sin \left( {m\omega_{{{\text{pwl}}}} \left( {\theta_{a} - \pi } \right) - \varepsilon \sigma t} \right)}}{{m^{2} \omega_{{{\text{pwl}}}}^{2} - 4\delta^{2} }}} \right\} - \frac{\varepsilon \mu A_{a}}{2} \\ \end{aligned} $$
(B1)
$$ \begin{aligned} \dot{\theta }_{a} & = \frac{\varepsilon B}{T}\left\{ {\mathop \int \limits_{0}^{\pi } \sin \left( {m\omega_{{{\text{pwl}}}} \left( {\psi - \theta_{{\text{a}}} } \right) + \varepsilon \sigma t} \right)\sin^{2} \left( \psi \right){\text{d}}\psi } \right. \\ & \quad \left. { + \,\frac{1}{{\delta^{2} }}\mathop \int \limits_{\pi }^{T} \sin \left( {m\omega_{{{\text{pwl}}}} \left( {\psi - \theta_{{\text{a}}} } \right) + \varepsilon \sigma t} \right)\sin^{2} \left( {\delta \psi + \rho } \right){\text{d}}\psi } \right\} \\ & \quad + \,\frac{\varepsilon \mu }{T}\left\{ {\mathop \int \limits_{0}^{\pi } \sin \left( \psi \right)\cos \left( \psi \right){\text{d}}\psi + \frac{1}{\delta }\mathop \int \limits_{\pi }^{T} \sin \left( {\delta \psi + \rho } \right)\cos \left( {\delta \psi + \rho } \right){\text{d}}\psi } \right\} \\ & \quad = \,\frac{\varepsilon B}{T}\left\{ {\mathop \int \limits_{0}^{\pi } \left\{ {\sin \left( {m\omega_{{{\text{pwl}}}} \left( {\psi - \theta_{{\text{a}}} } \right)} \right)\cos \left( {\varepsilon \sigma t} \right)} \right.} \right. \\ & \quad \left. { + \,\cos \left( {m\omega_{{{\text{pwl}}}} \left( {\psi - \theta_{{\text{a}}} } \right)} \right)\sin \left( {\varepsilon \sigma t} \right)} \right\}\sin^{2} \left( \psi \right){\text{d}}\psi \\ & \quad + \,\frac{1}{{\delta^{2} }}\mathop \int \limits_{\pi }^{T} \left\{ {\sin \left( {m\omega_{{{\text{pwl}}}} \left( {\psi - \theta_{{\text{a}}} } \right)} \right)\cos \left( {\varepsilon \sigma t} \right)} \right. \\ & \quad \left. { + \,\cos \left( {m\omega_{{{\text{pwl}}}} \left( {\psi - \theta_{{\text{a}}} } \right)} \right)\sin \left( {\varepsilon \sigma t} \right)} \right\}\left. {\sin^{2} \left( {\delta \psi + \rho } \right){\text{d}}\psi } \right\} \\ & \quad + \,\frac{\varepsilon \mu }{{2T}}\left\{ {\mathop \int \limits_{0}^{\pi } \sin \left( {2\psi } \right){\text{d}}\psi + \frac{1}{\delta }\mathop \int \limits_{\pi }^{T} \sin \left( {2\delta \psi + 2\rho } \right){\text{d}}\psi } \right\} \\ & \quad = \,\frac{2\varepsilon B}{{Tm\omega_{{{\text{pwl}}}} }}\left\{ {\frac{{\cos \left( {m\omega_{{{\text{pwl}}}} \left( {\theta_{a} - \pi } \right) - \varepsilon \sigma t} \right) - \cos \left( {m\theta_{a} \omega_{{{\text{pwl}}}} - \varepsilon \sigma t} \right)}}{{m^{2} \omega_{{{\text{pwl}}}}^{2} - 4}}} \right. \\ & \quad \left. { + \,\frac{{\cos \left( {m\omega_{{{\text{pwl}}}} \left( {\theta_{a} - T} \right) - \varepsilon \sigma t} \right) - \cos \left( {m\omega_{{{\text{pwl}}}} \left( {\theta_{a} - \pi } \right) - \varepsilon \sigma t} \right)}}{{m^{2} \omega_{{{\text{pwl}}}}^{2} - 4\delta^{2} }}} \right\} \\ \end{aligned} $$
(B2)

Appendix C

The averaging of the vector field (Eq. 17) reads

$$ \begin{aligned} \dot{A}_{a} & = - \frac{\varepsilon \mu A_{a}}{T}\left\{ {A_{a}^{2} \left( {\mathop \int \limits_{0}^{\pi } \sin^{2} \left( \psi \right)\cos^{2} \left( \psi \right){\text{d}}\psi + \frac{1}{{\delta^{2} }}\mathop \int \limits_{\pi }^{T} \sin^{2} \left( {\delta \psi + \rho } \right)\cos^{2} \left( {\delta \psi + \rho } \right){\text{d}}\psi } \right)} \right. \\ & \quad \left. { - \left( {\mathop \int \limits_{0}^{\pi } \cos^{2} \left( \psi \right){\text{d}}\psi + \frac{1}{{\delta^{2} }}\mathop \int \limits_{\pi }^{T} \cos^{2} \left( {\delta \psi + \rho } \right){\text{d}}\psi } \right)} \right\} \\ & \quad = - \frac{\varepsilon \mu A_{a}}{T}\left\{ {\frac{{\pi A_{a}^{2} \left( {1 + \delta^{3} } \right)}}{{8\delta^{3} }} - \frac{{\pi \left( {1 + \delta } \right)}}{2\delta }} \right\} \\ \end{aligned} $$
(C1)
$$ \begin{aligned} \dot{\theta }_{a} & = - \frac{\varepsilon \mu }{T}\left\{ {A_{a}^{2} \left( {\mathop \int \limits_{0}^{\pi } \sin^{3} \left( \psi \right)\cos \left( \psi \right){\text{d}}\psi + \frac{1}{{\delta^{3} }}\mathop \int \limits_{\pi }^{T} \sin^{3} \left( {\delta \psi + \rho } \right)\cos \left( {\delta \psi + \rho } \right){\text{d}}\psi } \right)} \right. \\ & \quad \left. { - \left( {\mathop \int \limits_{0}^{\pi } \sin \left( \psi \right)\cos \left( \psi \right){\text{d}}\psi + \frac{1}{\delta }\mathop \int \limits_{\pi }^{T} \sin \left( {\delta \psi + \rho } \right)\cos \left( {\delta \psi + \rho } \right){\text{d}}\psi } \right)} \right\} = 0 \\ \end{aligned} $$
(C2)

Appendix D

The averaging of the vector field (Eq. 21) reads

$$ \begin{aligned} \dot{A}_{a} & = \frac{\varepsilon k}{T}\left\{ {\mathop \int \limits_{0}^{\pi } \sin \left( {\omega_{{{\text{pwl}}}} \left( {\psi - \theta_{a} } \right) + \varepsilon \sigma t} \right)\cos \left( \psi \right){\text{d}}\psi + \mathop \int \limits_{\pi }^{T} \sin \left( {\omega_{{{\text{pwl}}}} \left( {\psi - \theta_{a} } \right) + \varepsilon \sigma t} \right)\cos \left( {\delta \psi + \rho } \right){\text{d}}\psi } \right\} \\ & \quad - \frac{\varepsilon }{T}\left\{ {\mu A_{a}\left( {\mathop \int \limits_{0}^{\pi } \cos^{2} \left( \psi \right){\text{d}}\psi + \mathop \int \limits_{\pi }^{T} \cos^{2} \left( {\delta \psi + \rho } \right){\text{d}}\psi } \right)} \right. \\ & \quad \left. { + \,\alpha A_{a}^{3} \left( { \mathop \int \limits_{0}^{\pi } \sin^{3} \left( \psi \right)\cos \left( \psi \right){\text{d}}\psi + \frac{1}{{\delta^{3} }}\mathop \int \limits_{\pi }^{T} \sin^{3} \left( {\delta \psi + \rho } \right)\cos \left( {\delta \psi + \rho } \right){\text{d}}\psi } \right)} \right\} \\ & \quad = \frac{\varepsilon k}{T}\left\{ {\mathop \int \limits_{0}^{\pi } \left( {\sin \left( {\omega_{{{\text{pwl}}}} \left( {\psi - \theta_{a} } \right)} \right)\cos \left( {\varepsilon \sigma t} \right) + \cos \left( {\omega_{{{\text{pwl}}}} \left( {\psi - \theta_{a} } \right)} \right)\sin \left( {\varepsilon \sigma t} \right)} \right)\cos \left( \psi \right){\text{d}}\psi } \right. \\ & \quad \left. { + \mathop \int \limits_{\pi }^{T} \left( {\sin \left( {\omega_{{{\text{pwl}}}} \left( {\psi - \theta_{a} } \right)} \right)\cos \left( {\varepsilon \sigma t} \right) + \cos \left( {\omega_{{{\text{pwl}}}} \left( {\psi - \theta_{a} } \right)} \right)\sin \left( {\varepsilon \sigma t} \right)} \right)\cos \left( {\delta \psi + \rho } \right){\text{d}}\psi } \right\} \\ & \quad - \frac{\varepsilon }{T}\left\{ {\mu A_{a}\left( {\mathop \int \limits_{0}^{\pi } \cos^{2} \left( \psi \right){\text{d}}\psi + \mathop \int \limits_{\pi }^{T} \cos^{2} \left( {\delta \psi + \rho } \right){\text{d}}\psi } \right)} \right. \\ & \quad \left. { + \,\alpha A_{a}^{3} \left( { \mathop \int \limits_{0}^{\pi } \sin^{3} \left( \psi \right)\cos \left( \psi \right){\text{d}}\psi + \frac{1}{{\delta^{3} }}\mathop \int \limits_{\pi }^{T} \sin^{3} \left( {\delta \psi + \rho } \right)\cos \left( {\delta \psi + \rho } \right){\text{d}}\psi } \right)} \right\} \\ & \quad = \frac{{\varepsilon k\omega_{{{\text{pwl}}}} }}{T}\left\{ {\frac{{\cos \left( {\omega_{{{\text{pwl}}}} \left( {\theta_{a} - \pi } \right) - \varepsilon \sigma t} \right) + \cos \left( {\omega_{{{\text{pwl}}}} {\theta_{a}} - \varepsilon \sigma t} \right)}}{{\omega_{{{\text{pwl}}}}^{2} - 1}}} \right. \\ & \quad \left. { - \frac{{\cos \left( {\omega_{{{\text{pwl}}}} \left( {\theta_{a} - T} \right) - \varepsilon \sigma t} \right) + \cos \left( {\omega_{{{\text{pwl}}}} \left( {\theta_{a} - \pi } \right) - \varepsilon \sigma t} \right)}}{{\omega_{{{\text{pwl}}}}^{2} - \delta^{2} }}} \right\} - \frac{\varepsilon }{T}\left\{ {\mu A_{a}\frac{{\pi \left( {1 + \delta } \right)}}{2\delta }} \right\} \\ \end{aligned} $$
(D1)
$$ \begin{aligned} \dot{\theta}_{a} & = - \frac{\varepsilon k}{{A_{a}T}}\left\{ {\mathop \int \limits_{0}^{\pi } \sin \left( {\omega_{{{\text{pwl}}}} \left( {\psi - \theta_{a} } \right) + \varepsilon \sigma t} \right)\sin \left( \psi \right){\text{d}}\psi + \frac{1}{\delta }\mathop \int \limits_{\pi }^{T} \sin \left( {\omega_{{{\text{pwl}}}} \left( {\psi - \theta_{a} } \right) + \varepsilon \sigma t} \right)\sin \left( {\delta \psi + \rho } \right){\text{d}}\psi } \right\} \\ & \quad + \varepsilon \left\{ {\mu \left( {\mathop \int \limits_{0}^{\pi } \sin \left( \psi \right)\cos \left( \psi \right){\text{d}}\psi + \frac{1}{\delta }\mathop \int \limits_{\pi }^{T} \sin \left( {\delta \psi + \rho } \right)\cos \left( {\delta \psi + \rho } \right){\text{d}}\psi } \right)} \right. \\ & \quad \left. { + \,\alpha A_{a}^{2} \left( { \mathop \int \limits_{0}^{\pi } \sin^{4} \left( \psi \right){\text{d}}\psi + \frac{1}{{\delta^{4} }}\mathop \int \limits_{\pi }^{T} \sin^{4} \left( {\delta \psi + \rho } \right){\text{d}}\psi } \right)} \right\} \\ & \quad = - \frac{\varepsilon k}{{A_{a}T}}\left\{ {\mathop \int \limits_{0}^{\pi } \left( {\sin \left( {\omega_{{{\text{pwl}}}} \left( {\psi - \theta_{a} } \right)} \right)\cos \left( {\varepsilon \sigma t} \right) + \cos \left( {\omega_{{{\text{pwl}}}} \left( {\psi - \theta_{a} } \right)} \right)\sin \left( {\varepsilon \sigma t} \right)} \right)\sin \left( \psi \right){\text{d}}\psi } \right. \\ & \quad \left. { + \frac{1}{\delta }\mathop \int \limits_{\pi }^{T} \left( {\sin \left( {\omega_{{{\text{pwl}}}} \left( {\psi - \theta_{a} } \right)} \right)\cos \left( {\varepsilon \sigma t} \right) + \cos \left( {\omega_{{{\text{pwl}}}} \left( {\psi - \theta_{a} } \right)} \right)\sin \left( {\varepsilon \sigma t} \right)} \right)\sin \left( {\delta \psi + \rho } \right){\text{d}}\psi } \right\} \\ & \quad + \varepsilon \left\{ {\mu \left( {\mathop \int \limits_{0}^{\pi } \sin \left( \psi \right)\cos \left( \psi \right){\text{d}}\psi + \frac{1}{\delta }\mathop \int \limits_{\pi }^{T} \sin \left( {\delta \psi + \rho } \right)\cos \left( {\delta \psi + \rho } \right){\text{d}}\psi } \right)} \right. \\ & \quad \left. { + \,\alpha A_{a}^{2} \left( { \mathop \int \limits_{0}^{\pi } \sin^{4} \left( \psi \right){\text{d}}\psi + \frac{1}{{\delta^{4} }}\mathop \int \limits_{\pi }^{T} \sin^{4} \left( {\delta \psi + \rho } \right){\text{d}}\psi } \right)} \right\} \\ & \quad = - \frac{\varepsilon k}{{A_{a}T}}\left\{ {\frac{{\sin \left( {\omega_{{{\text{pwl}}}} \left( {\theta_{a} - \pi } \right) - \varepsilon \sigma t} \right) + \sin \left( {\omega_{{{\text{pwl}}}} \theta_{a} - \varepsilon \sigma t} \right)}}{{\omega_{{{\text{pwl}}}}^{2} - 1}}} \right. \\ & \quad \left. { - \frac{{\sin \left( {\omega_{{{\text{pwl}}}} \left( {\theta_{a} - T} \right) - \varepsilon \sigma t} \right) + \sin \left( {\omega_{{{\text{pwl}}}} \left( {\theta_{a} - \pi } \right) - \varepsilon \sigma t} \right)}}{{\omega_{{{\text{pwl}}}}^{2} - \delta^{2} }}} \right\} + \frac{\varepsilon }{T}\left\{ {\alpha A_{a}^{2} \frac{{3\pi \left( {1 + \delta^{5} } \right)}}{{8\delta^{5} }}} \right\} \\ \end{aligned} $$
(D2)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jayaprakash, K.R., Tandel, V. & Starosvetsky, Y. Dynamics of excited piecewise linear oscillators. Nonlinear Dyn 111, 5513–5532 (2023). https://doi.org/10.1007/s11071-022-08108-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-022-08108-9

Keywords

Navigation