Skip to main content
Log in

Multi-observer approach for tracking control of flexible spacecraft using exponential mapping of SE(3)

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper is concerned with the problem of attitude-orbit tracking control for flexible spacecraft. A relative attitude-orbit-structure integrated dynamics model is derived for flexible spacecraft, where environmental disturbances and parameter uncertainty are considered as lumped disturbance. And the relative position and attitude of the spacecraft are described by the exponential coordinates of SE(3). Since the modal variables are not measurable, a modal observer is proposed to obtain the state estimation related to elastic vibration. Then, a composite control technique is proposed for attitude-orbit tracking of flexible spacecraft under lumped disturbance by combining a state observer of modal parameter and nonlinear disturbance observer with an asymptotic tracking control. The vibration mode information and the lumped disturbance are estimated and compensated by the modal observer and the nonlinear disturbance observer, respectively, in the feedback link. The stability of the composed control approach consisting of the asymptotic tracking control and multi-observer observer is guaranteed through Lyapunov method. The simulation results validate the composite control technique can effectively enhance disturbance attenuation ability, robust dynamics performance and the desired relative attitude tracking accuracy of a flexible spacecraft with multiple disturbances and parameter uncertainty.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Angeletti, F., Iannelli, P., Gasbarri, P.: Automated nested Co-design framework for structural/control dynamics in flexible space systems. Acta Astronaut. 198, 445–453 (2022). https://doi.org/10.1016/j.actaastro.2022.05.016

    Article  Google Scholar 

  2. Hu, Q., Su, L., Cao, Y., Zhang, J.: Decentralized simple adaptive control for large space structures. J. Sound Vibr. 427, 95–119 (2018). https://doi.org/10.1016/j.jsv.2018.04.033

    Article  Google Scholar 

  3. Chamberlain, M.K., Kiefer, S.H., LaPointe, M., LaCorte, P.: On-orbit flight testing of the Roll-Out Solar Array. Acta Astronaut. 179, 407–414 (2021). https://doi.org/10.1016/j.actaastro.2020.10.024

    Article  Google Scholar 

  4. Hasan, M.N., Haris, M., Qin, S.: Vibration suppression and fault-tolerant attitude control for flexible spacecraft with actuator faults and malalignments. Aerosp. Sci. Technol. 120, 107290 (2022). https://doi.org/10.1016/j.ast.2021.107290

    Article  Google Scholar 

  5. Cheng, X., Yuan, Liu, Yi, Q., Feng, W., Zhang, J.J.: Coordinated attitude control for flexible spacecraft formation with actuator configuration misalignment. Chin. J. Aeronaut. 34(3), 176–186 (2021). https://doi.org/10.1016/j.cja.2020.10.001

    Article  Google Scholar 

  6. Yu, X., Zhu, Y., Qiao, J., Guo, L.: Antidisturbance controllability analysis and enhanced antidisturbance controller design with application to flexible spacecraft. IEEE Trans. Aerosp. Electron. Syst. 57(5), 3393–3404 (2021). https://doi.org/10.1109/TAES.2021.3079566

    Article  Google Scholar 

  7. Chebbi, J., Dubanchet, V., Perez Gonzalez, J.A., et al.: Linear dynamics of flexible multibody systems. Multibody Syst. Dyn. 41(1), 75–100 (2017). https://doi.org/10.1007/s11044-016-9559-y

    Article  MathSciNet  MATH  Google Scholar 

  8. Guy, N., Alazard, D., Cumer, C., et al.: Dynamic modeling and analysis of spacecraft with variable tilt of flexible appendages. J. Dyn. Syst. Meas. Control-Trans. 136(2), 021020 (2014). https://doi.org/10.1115/1.4025998

    Article  Google Scholar 

  9. Alazard D, Perez J A, Cumer C, et al.: Two-input two-output port model for mechanical systems. In: AIAA Guidance, Navigation, and Control Conference, Kissimmee, USA, 1778. (2015). https://doi.org/10.2514/6.2015-1778

  10. Sanfedino, F., Alazard, D., Pommier-Budinger, V., et al.: Finite element based N-Port model for preliminary design of multibody systems. J. Sound Vibr. 415, 128–146 (2018). https://doi.org/10.1016/j.jsv.2017.11.021

    Article  Google Scholar 

  11. Gonzalez, José Alvaro Perez. Commande Robuste Structurée: Application Co-Design Mécanique/Contrôle d’Attitude d’un Satellite Flexible. PhD thesis, INSTITUT SUPERIEUR DE L’AERONAUTIQUE ET DE L’ESPACE (ISAE), Toulouse, France, (2016)

  12. Karim Bondoky, Klaus Janschek, Andreas Rathke, and Sebastian Schwarz. Analysis of hardware-in-the-loop setup without artificial compliance for docking contact dynamics of satellites. In: AIAA SPACE and astronautics forum and exposition, Orlando, USA, pp.5183 (2017). https://doi.org/10.2514/6.2017-5183

  13. Mangiacapra, Gennaro, Wittal, Matthew, Capello, Elisa, Nazari, Morad: Unscented kalman filter and control on TSE(3) with application to spacecraft dynamics. Nonlinear Dyn. 108(3), 2127–2146 (2022). https://doi.org/10.1007/s11071-022-07293-x

    Article  Google Scholar 

  14. Mangiacapra, Gennaro: Navigation and Control Algorithm Design on TSE(3) around Small Irregular Bodies. PhD thesis, Politecnico di Torino, Turin, Italy, (2021)

  15. Lee, Taeyoung, Leok, Melvin, Harris McClamroch, N: Geometric tracking control of a quadrotor uav on SE(3). In 49th IEEE conference on decision and control (CDC), Atlanta, USA, pp.5420–5425. (2010). https://doi.org/10.1109/CDC.2010.5717652

  16. Lefeber, Erjen, Van den Eijnden, SJAM, Nijmeijer, Henk: Almost global tracking control of a quadrotor uav on SE(3). In 2017 IEEE 56th Annual Conference on Decision and Control (CDC), Melbourne, Australia, pp.1175–1180. (2017). https://doi.org/10.1109/CDC.2017.8263815

  17. Lee, Daero, Sanyal, Amit K., Butcher, Eric A.: Asymptotic tracking control for spacecraft formation flying with decentralized collision avoidance. J. Guid. Control Dyn. 38(4), 587–600 (2015). https://doi.org/10.2514/1.G000101

    Article  Google Scholar 

  18. Lee, Daero: Nonlinear disturbance observer-based robust control for spacecraft formation flying. Aerosp. Sci. Technol. 76, 82–90 (2018). https://doi.org/10.1016/j.ast.2018.01.027

    Article  Google Scholar 

  19. Lee, Daero, Sanyal, Amit K., Butcher, Eric A., Scheeres, Daniel J.: Almost global asymptotic tracking control for spacecraft body-fixed hovering over an asteroid. Aerosp. Sci. Technol. 38, 105–115 (2014). https://doi.org/10.1016/j.ast.2014.07.013

    Article  Google Scholar 

  20. Lee, Daero, Sanyal, Amit K., Butcher, Eric A., Scheeres, Daniel J.: Finite-time control for spacecraft body-fixed hovering over an asteroid. IEEE Trans. Aerosp. Electron. Syst. 51(1), 506–520 (2015). https://doi.org/10.1109/TAES.2014.140197

    Article  Google Scholar 

  21. Lee, Daero, Vukovich, George: Adaptive finite-time control for spacecraft hovering over an asteroid. IEEE Trans. Aerosp. Electron. Syst. 52(3), 1183–1196 (2016). https://doi.org/10.1109/TAES.2015.140822

    Article  Google Scholar 

  22. Hasan, Muhammad Noman, Haris, Muhammad, Qin, Shiyin: Fault-tolerant spacecraft attitude control: A critical assessment. Prog. Aerosp. Sci. 130, 100806 (2022). https://doi.org/10.1016/j.paerosci.2022.100806

    Article  Google Scholar 

  23. Lee, Daero: Nonlinear disturbance observer-based robust control of attitude tracking of rigid spacecraft. Nonlinear Dyn. 88(2), 1317–1328 (2017). https://doi.org/10.1007/s11071-016-3312-1

    Article  MATH  Google Scholar 

  24. Qinglei, Hu., Xiao, Bing: Fault-tolerant sliding mode attitude control for flexible spacecraft under loss of actuator effectiveness. Nonlinear Dyn. 64(1), 13–23 (2011). https://doi.org/10.1007/s11071-010-9842-z

    Article  MathSciNet  MATH  Google Scholar 

  25. Yan, Ruidong, Zhong, Wu.: Attitude stabilization of flexible spacecrafts via extended disturbance observer based controller. Acta Astronaut. 133, 73–80 (2017). https://doi.org/10.1016/j.actaastro.2017.01.004

    Article  Google Scholar 

  26. Wang, Zhen, Zhong, Wu.: Nonlinear attitude control scheme with disturbance observer for flexible spacecrafts. Nonlinear Dyn. 81(1), 257–264 (2015). https://doi.org/10.1007/s11071-015-1987-3

    Article  MathSciNet  MATH  Google Scholar 

  27. Lynch, M.K., Park, F.C.: Modern robotics: mechanics, planning, and control, 2nd edn. Cambridge University Press, UK (2017)

    Google Scholar 

  28. Schaub, H., Junkins, J.L.: Analytical mechanics of space systems. 2nd edn. AIAA, USA, (2009). https://doi.org/10.2514/4.867231

  29. Bullo, F., Murray, R.M.: Proportional derivative (PD) control on the euclidean group. In: European Control Conference, pp.1091–1097. Rome, Italy (1995)

  30. Tantawi, Khalid HM., Alazard, Daniel, Cumer, Christelle: Linear dynamic modeling of spacecraft with various flexible appendages. IFAC Proc. Vol. 41(2), 11148–11153 (2008). https://doi.org/10.3182/20080706-5-KR-1001.01889

    Article  Google Scholar 

  31. Chretien, J.-P., Manceaux-Cumer, C.: Minimal LFT form of a spacecraft built up from two bodies. In: AIAA Guidance, Navigation, and Control Conference and Exhibit, pp.4350. Montreal,Canada, (2001). https://doi.org/10.2514/6.2001-4350

  32. Cohn, P.M.: Further Algebra and Applications. Springer, Berlin (2011)

    Google Scholar 

  33. Jun Yang, W.-H., Chen, Shihua Li: Non-linear disturbance observer-based robust control for systems with mismatched disturbances/uncertainties. IET Contr. Theory Appl. 5(18), 2053–2062 (2011). https://doi.org/10.1049/iet-cta.2010.0616

    Article  MathSciNet  Google Scholar 

  34. Ge, Shuzhi Sam, Wang, Con: Adaptive neural control of uncertain mimo nonlinear systems. IEEE Trans. Neural Netw. 15(3), 674–692 (2004). https://doi.org/10.1109/TNN.2004.826130

    Article  Google Scholar 

  35. Chen, Wen-Hua., Ballance, Donald J., Gawthrop, Peter J., O’Reilly, John: A nonlinear disturbance observer for robotic manipulators. IEEE Trans. Ind. Electron. 47(4), 932–938 (2000). https://doi.org/10.1109/41.857974

    Article  Google Scholar 

  36. Slotine, J.J.E., Li, W.: Applied Nonlinear Control. Englewood Cliffs, NJ (1991)

  37. Alazard, D., Sanfedino, F.: Satellite dynamics toolbox library (sdtlib)-user’s guide. ISAE, Toulouse, France, (2021)

Download references

Acknowledgements

The authors are grateful to the reviewers for their critical and constructive review of the manuscript.

Funding

This work has received funding from the Youth Foundation for Defence Science and Technology Excellence (2017-JCJQ-ZQ-034).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huayi Li.

Ethics declarations

Conflict of interest

None of the authors have a conflict of interest to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was supported by the National Defense Science and Technology Excellence Young Scientists Foundation of China (No.2017-JCJQ-ZQ-034).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, Q., Li, H., Jia, Q. et al. Multi-observer approach for tracking control of flexible spacecraft using exponential mapping of SE(3). Nonlinear Dyn 111, 5329–5343 (2023). https://doi.org/10.1007/s11071-022-08102-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-022-08102-1

Keywords

Mathematics Subject Classification

Navigation