Skip to main content
Log in

Innovative approach with harmonic modes and finite element modeling for the nonlinear dynamic analysis of a suspension bridge

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The nonlinear characteristics of a general multiple degree-of-freedom suspension bridge under harmonic excitation are studied with an innovative approach consisting of the harmonic modes, the finite element modeling and the incremental harmonic balance method. The geometric nonlinearity induced by large-amplitude vibration is considered. The harmonic mode and mean kinetic energy of the system are proposed to describe the nonlinear responses. The harmonic mode can be expressed as a linear combination of different linearized system modes. The resonance responses of the structure are characterized with the participation ratio of these system modes. Its composition under harmonic excitations can easily be described in terms of the different harmonic mode shapes and then the system modes. The proposed method is further applied to analyze, in detail, the properties of the harmonic modes and the evolution of the steady-state nonlinear responses with variations in the excitation frequency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Abbreviations

a 1 ~ a 12 :

Physical coefficients

α ik :

Modal phase of the kth system mode

a jk,, b jk :

Coefficients of Fourier series

a k :

Scaling factor of the kth system mode

b ik :

Modal amplitude of the kth system mode

A, B :

Node name

A c :

Sectional area of the cable

\({\mathbf{A}}_{j}\) :

Matrix related to coefficients of Fourier series

C :

Damping matrix

d :

Horizontal projection of l

E :

Elastic modulus of the material

E :

Kinetic energy of each DoF of the system

\({\overline{\mathbf{E}}}\) :

Mean kinetic energy of the whole system

F c :

Initial internal axial force

F h :

Horizontal component of the axial force

F v :

Vertical component of the axial force

F c :

Initial internal axial force

F :

Vector of the amplitude and location of external harmonic excitations

h :

Vertical projection of l

k :

Initial stiffness of cable

\(\overline{k}\) :

Stiffness after considering the initial internal force of cable

K:

Component of stiffness matrix

l :

Cable length in static equilibrium state

l 0 :

Original length of the element with no axial force

m :

Mass of node

M :

Matrix of system mass matrices

M c :

Lumped mass matrix of the link element

P ik :

Parameter related to contribution of different system modes in each harmonic mode

q :

Dynamic cement response

q 0.:

Dynamic displacement cable related to ω0

K :

Stiffness displacement response

R :

Error vector

t :

Time

u 1, u 2 :

Horizontal displacements of node

v 1, v 2 :

Vertical displacements of node

V(t):

Vibration reconstructed by system modes

W :

Real vibration shapes

Y :

Vibration shape fitted by system mode shapes

α, β :

Coefficients of Rayleigh damping

\(\Delta ( \cdot )\) :

Interval of physical variable

ω :

Circular frequency of excitation

ω 0 :

Frequency close to ω

τ :

Non-dimensional time

φ i :

Mode shape vector of the ith mode

References

  1. Hayashikawa, T., Watanabe, N.: Vertical vibration in Timoshenko beam suspension bridges. J. Eng. Mech. 110, 341–356 (1984). https://doi.org/10.1061/(asce)0733-9399(1984)110:3(341)

    Article  Google Scholar 

  2. Kim, M.Y., Kwon, S.D., Kim, N.I.: Analytical and numerical study on free vertical vibration of shear-flexible suspension bridges. J. Sound Vib. 238, 65–84 (2000). https://doi.org/10.1006/jsvi.2000.3079

    Article  Google Scholar 

  3. Hayashikawa, T.: Torsional vibration analysis of suspension bridges with gravitational stiffness. J. Sound Vib. 204, 117–129 (1997). https://doi.org/10.1006/jsvi.1997.0948

    Article  Google Scholar 

  4. Luco, J.E., Turmo, J.: Linear vertical vibrations of suspension bridges: a review of continuum models and some new results. Soil Dyn. Earthq. Eng. 30, 769–781 (2010). https://doi.org/10.1016/j.soildyn.2009.10.009

    Article  Google Scholar 

  5. Gwon, S.G., Choi, D.H.: Improved continuum model for free vibration analysis of suspension bridges. J. Eng. Mech. 143, 04017038 (2017). https://doi.org/10.1061/(ASCE)EM.1943-7889.0001244

    Article  Google Scholar 

  6. Gwon, S.G., Choi, D.H.: Continuum model for static and dynamic analysis of suspension bridges with a floating girder. J. Bridge Eng. 23, 04018079 (2018). https://doi.org/10.1061/(ASCE)BE.1943-5592.0001282

    Article  Google Scholar 

  7. Gwon, S.G., Choi, D.H.: Static and dynamic analyses of a suspension bridge with three-dimensionally curved main cables using a continuum model. Eng. Struct. 161, 250–264 (2018). https://doi.org/10.1016/j.engstruct.2018.01.062

    Article  Google Scholar 

  8. Abdel-Ghaffar, A.M., Rubin, L.I.: Nonlinear free vibrations of suspension bridges: theory. J. Eng. Mech. 109, 313–329 (1983). https://doi.org/10.1061/(ASCE)0733-9399(1983)109:1(313)

    Article  Google Scholar 

  9. Abdel-Ghaffar, A.M., Rubin, L.I.: Nonlinear free vibrations of suspension bridges: application. J. Eng. Mech. 109, 330–345 (1983). https://doi.org/10.1016/j.jweia.2017.10.030

    Article  Google Scholar 

  10. Abdel-Rohman, M., Nayfeh, A.H.: Active control of non-linear oscillations in bridges. ASCE J. Eng. Mech. 113, 335–348 (1987). https://doi.org/10.1061/(ASCE)0733-9399(1987)113:3(335)

    Article  Google Scholar 

  11. Lazer, A.C., McKenna, P.J.: Large-amplitude periodic oscillations in suspension bridges: Some new connections with nonlinear analysis. SIAM Rev. 32, 537–578 (1990). https://doi.org/10.1137/1032120

    Article  MATH  Google Scholar 

  12. West, H.H., Suhoski, J.E., Geschwindner, L.F.: Natural frequencies and modes of suspension bridges. J. Struct. Eng. 110, 2471–2486 (1984). https://doi.org/10.1061/(ASCE)0733-9445(1984)110:10(2471)

    Article  Google Scholar 

  13. Katsuchi, H., Jones, N.P., Scanlan, R.H.: Multimode coupled flutter and buffeting analysis of the Akashi-Kaikyo bridge. J. Struct. Eng. 125, 60–70 (1999). https://doi.org/10.1061/(asce)0733-9445(1999)125:1(60)

    Article  Google Scholar 

  14. Fenerci, A., Øiseth, O.: Strong wind characteristics and dynamic response of a long-span suspension bridge during a storm. J. Wind Eng. Ind. Aerod. 172, 116–138 (2018). https://doi.org/10.1016/j.jweia.2017.10.030

    Article  Google Scholar 

  15. Lau, S.L., Cheung, Y.K.: Amplitude incremental variational principle for nonlinear structural vibrations. ASME J. Appl. Mech. 48, 959–964 (1981). https://doi.org/10.1115/1.3157762

    Article  MATH  Google Scholar 

  16. Cheung, Y.K., Lau, S.L.: Incremental time–space finite strip method for nonlinear structural vibrations. Earthq. Eng. Struct. Dyn. 10, 239–253 (1982). https://doi.org/10.1002/eqe.4290100206

    Article  Google Scholar 

  17. Wang, X.F., Zhu, W.D.: A modified incremental harmonic balance method based on the fast Fourier transform and Broyden’s method. Nonlinear Dyn. 81, 981–989 (2015). https://doi.org/10.1007/s11071-015-2045

    Article  MATH  Google Scholar 

  18. Huang, J.L., Zhu, W.D.: An incremental harmonic balance method with two timescales for quasiperiodic motion of nonlinear systems whose spectrum contains uniformly spaced sideband frequencies. Nonlinear Dyn. 90, 1015–1033 (2017). https://doi.org/10.1007/s11071-017-3708-6

    Article  Google Scholar 

  19. Huang, J.L., Zhu, W.D.: A new incremental harmonic method with two time scales for quasi-periodic motions of an axially moving beam with internal resonance under single-tone external excitation. ASME J. Vib. Acoust. 139, 021010 (2017). https://doi.org/10.1115/1.4035135

    Article  Google Scholar 

  20. Hui, Y., Kang, H.J., Law, S.S., Chen, Z.Q.: Modeling and Nonlinear dynamic analysis of cable-supported bridge with inclined main cables. Eng. Struct. 156, 351–362 (2018). https://doi.org/10.1016/j.engstruct.2017.11.040

    Article  Google Scholar 

  21. Hui, Y., Kang, H.J., Law, S.S., Chen, Z.Q.: Analysis on two types of internal resonance of a suspended bridge structure with inclined main cable. Eur. J. Mech. A-Solid 72, 135–147 (2018). https://doi.org/10.1016/j.euromechsol.2018.05.005

    Article  MATH  Google Scholar 

  22. Hui, Y., Kang, H.J., Law, S.S., Hua, X.G.: Effect of cut-off order of non-linear stiffness on the dynamics of a sectional suspension bridge model. Eng. Struct. 185, 377–391 (2019). https://doi.org/10.1016/j.engstruct.2019.01.129

    Article  Google Scholar 

  23. Lacarbonara, W., Paolone, A., Vestroni, F.: Elastodynamics of nonshallow suspended cables: linear modal properties. J. Vib. Acoust. 129, 425–433 (2007). https://doi.org/10.1115/1.2748463

    Article  MATH  Google Scholar 

  24. Lacarbonara, W., Paolone, A., Vestroni, F.: Non-linear modal properties of non-shallowcables. Int. J. Non-Linear Mech. 42, 542–554 (2007). https://doi.org/10.1016/j.ijnonlinmec.2007.02.013

    Article  Google Scholar 

  25. Nakhla, M.S., Vlach, J.: A piecewise harmonic balance technique for determination of periodic response of nonlinear systems. IEEE Trans. Circuits Syst. 23, 85–91 (1976). https://doi.org/10.1109/TCS.1976.1084181

    Article  Google Scholar 

  26. Capecchi, D., Vestroni, F.: Periodic response of a class of hysteretic oscillators. Int. J. Non Linear Mech. 25, 309–317 (1990). https://doi.org/10.1016/0020-7462(90)90060-M

    Article  MATH  Google Scholar 

  27. Arena, A., Lacarbonara, W., Valentine, D.T., Marzocca, P.: Aeroelastic behavior of long-span suspension bridges under arbitrary wind profiles. J. Fluids Struct. 50, 105–119 (2014). https://doi.org/10.1016/j.jfluidstructs.2014.06.018

    Article  Google Scholar 

  28. Arena, A., Lacarbonara, W., Marzocca, P.: Post-critical behavior of suspension bridges under nonlinear aerodynamic loading. J. Comput. Nonlinear Dyn. 11(1), 011005 (2016). https://doi.org/10.1115/1.4030040

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported in part by the 111 project of the Ministry of Education and the Bureau of Foreign Experts of China (No.B18062), National Natural Science Foundation of China (52078087, 51808075), Natural Science Foundation of Chongqing, China (cstc2020jcyj-msxmX0773), the Fundamental Reseach Funds for the Central Universities (2020CDJ-LHZZ-018)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kunpeng Guo.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this manuscript entitled “Innovative approach with harmonic modes and finite element modeling for the nonlinear dynamic analysis of a suspension bridge”.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hui, Y., Law, S.S., Guo, K. et al. Innovative approach with harmonic modes and finite element modeling for the nonlinear dynamic analysis of a suspension bridge. Nonlinear Dyn 111, 4221–4236 (2023). https://doi.org/10.1007/s11071-022-08069-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-022-08069-z

Keywords

Navigation