Skip to main content
Log in

Model-free continuation of periodic orbits in certain nonlinear systems using continuous-time adaptive control

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper generalizes recent results by the authors on noninvasive model-reference adaptive control designs for control-based continuation of periodic orbits in periodically excited linear systems with matched uncertainties to a larger class of periodically excited nonlinear systems with matched uncertainties and known structure. A candidate adaptive feedback design is also proposed in the case of scalar problems with unmodeled nonlinearities. In the former case, rigorous analysis shows guaranteed performance bounds for the associated prediction and estimation errors. Together with an assumption of persistent excitation, there follows asymptotic convergence to periodic responses determined uniquely by an a priori unknown periodic reference input and independent of initial conditions, as required by the control-based continuation paradigm. In particular, when the reference input equals the sought periodic response, the steady-state control input vanishes. Identical conclusions follow for the case of scalar dynamics with unmodeled nonlinearities, albeit with slow rates of convergence. Numerical simulations validate the theoretical predictions for individual parameter values. Integration with the software package coco demonstrates successful continuation along families of stable and unstable periodic orbits with a minimum of parameter tuning. The results expand the envelope of known noninvasive feedback strategies for use in experimental model validation and engineering design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Datasets generated and analyzed during this study are available upon request from the authors. Matlab scripts sufficient to generate this data will be posted to an open-source archive.

References

  1. Abeloos, G., Müller, F., Ferhatoglu, E., Scheel, M., Collette, C., Kerschen, G., Brake, M., Tiso, P., Renson, L., Krack, M.: A consistency analysis of phase-locked-loop testing and control-based continuation for a geometrically nonlinear frictional system. Mech. Syst. Signal Process. (2022). https://doi.org/10.1016/j.ymssp.2022.108820

    Article  Google Scholar 

  2. Abeloos, G., Renson, L., Collette, C., Kerschen, G.: Stepped and swept control-based continuation using adaptive filtering. Nonlinear Dyn. 104(4), 3793–3808 (2021). https://doi.org/10.1007/s11071-021-06506-z

    Article  Google Scholar 

  3. Barton, D.: Control-based continuation: Bifurcation and stability analysis for physical experiments. Mech. Syst. Signal Process. 84, 54–64 (2017). https://doi.org/10.1016/j.ymssp.2015.12.039

    Article  Google Scholar 

  4. Barton, D., Burrow, S.: Numerical continuation in a physical experiment: investigation of a nonlinear energy harvester. J. Comput. Nonlinear Dyn. (2011). https://doi.org/10.1115/1.4002380

    Article  Google Scholar 

  5. Barton, D., Mann, B., Burrow, S.: Control-based continuation for investigating nonlinear experiments. J. Vib. Control 18(4), 509–520 (2012). https://doi.org/10.1177/1077546310384004

    Article  MathSciNet  Google Scholar 

  6. Barton, D., Sieber, J.: Systematic experimental exploration of bifurcations with noninvasive control. Phys. Rev. E (2013). https://doi.org/10.1103/PhysRevE.87.052916

    Article  Google Scholar 

  7. Beregi, S., Barton, D., Rezgui, D., Neild, S.: Robustness of nonlinear parameter identification in the presence of process noise using control-based continuation. Nonlinear Dyn. 104(2), 885–900 (2021). https://doi.org/10.1007/s11071-021-06347-w

    Article  Google Scholar 

  8. Bureau, E., Schilder, F., Elmegård, M., Santos, I., Thomsen, J., Starke, J.: Experimental bifurcation analysis of an impact oscillator-determining stability. J. Sound Vib. 333(21), 5464–5474 (2014). https://doi.org/10.1016/j.jsv.2014.05.032

    Article  Google Scholar 

  9. Bureau, E., Schilder, F., Ferreira Santos, I., Juel Thomsen, J., Starke, J.: Experimental bifurcation analysis of an impact oscillator—tuning a non-invasive control scheme. J. Sound Vib. 332(22), 5883–5897 (2013). https://doi.org/10.1016/j.jsv.2013.05.033

    Article  Google Scholar 

  10. Dankowicz, H., Schilder, F.: Recipes for Continuation, vol. 11. SIAM (2013)

  11. Desoer, C.: Slowly varying system \(\dot{x}=a(t)x\). IEEE Trans. Autom. Control 14(6), 780–781 (1969). https://doi.org/10.1109/TAC.1969.1099336

    Article  MathSciNet  Google Scholar 

  12. Jenkins, B., Annaswamy, A., Lavretsky, E., Gibson, T.: Convergence properties of adaptive systems and the definition of exponential stability. SIAM J. Control. Optim. 56(4), 2463–2484 (2018). https://doi.org/10.1137/15M1047805

    Article  MathSciNet  MATH  Google Scholar 

  13. Kleyman, G., Paehr, M., Tatzko, S.: Application of control-based-continuation for characterization of dynamic systems with stiffness and friction nonlinearities. Mech. Res. Commun. (2020). https://doi.org/10.1016/j.mechrescom.2020.103520

    Article  Google Scholar 

  14. Lavretsky, E., Wise, K.: Robust and Adaptive Control: With Aerospace Applications. Advanced Textbooks in Control and Signal Processing. Springer, London (2012)

  15. Lee, K., Barton, D., Renson, L.: Model identification of a fluttering aerofoil using control-based continuation and normal form analysis. In: Proceedings of the International Conference on Noise and Vibration Engineering, ISMA 2020, and the International Conference on Uncertainty in Structural Dynamics, USD 2020, Leuven, Belgium, pp. 261–268 (2020)

  16. Li, Y.: Adaptive control for enhanced performance of devices and algorithms. Ph.D. thesis, University of Illinois at Urbana-Champaign (2019). http://hdl.handle.net/2142/106152

  17. Li, Y., Dankowicz, H.: Adaptive control designs for control-based continuation in a class of uncertain discrete-time dynamical systems. J. Vib. Control 26(21–22), 2092–2109 (2020). https://doi.org/10.1177/1077546320913377

    Article  MathSciNet  Google Scholar 

  18. Li, Y., Dankowicz, H.: Adaptive control designs for control-based continuation of periodic orbits in a class of uncertain linear systems. Nonlinear Dyn. 103(3), 2563–2579 (2021). https://doi.org/10.1007/s11071-021-06216-6

    Article  Google Scholar 

  19. Misra, S., Dankowicz, H., Paul, M.: Event-driven feedback tracking and control of tapping-mode atomic force microscopy. Proc. R. Soc. A Math. Phys. Eng. Sci. 464(2096), 2113–2133 (2008). https://doi.org/10.1098/rspa.2007.0016

    Article  MathSciNet  MATH  Google Scholar 

  20. Narendra, K., Annaswamy, A.: Persistent excitation in adaptive systems. Int. J. Control 45(1), 127–160 (1987). https://doi.org/10.1080/00207178708933715

    Article  MathSciNet  MATH  Google Scholar 

  21. Renson, L.: Identification of backbone curves and nonlinear frequency responses using control-based continuation and local gaussian process regression. In: Conference Proceedings of the Society for Experimental Mechanics Series, pp. 83–85 (2021). https://doi.org/10.1007/978-3-030-47626-7_13

  22. Renson, L., Barton, D., Neild, S.: Experimental tracking of limit-point bifurcations and backbone curves using control-based continuation. Int. J. Bifurcat. Chaos (2017). https://doi.org/10.1142/S0218127417300026

    Article  MATH  Google Scholar 

  23. Renson, L., Ehrhardt, D., Barton, D., Neild, S., Cooper, J.: Connecting nonlinear normal modes to the forced response of a geometric nonlinear structure with closely spaced modes. In: Proceedings of the International Conference on Noise and Vibration Engineering, ISMA 2016, and the International Conference on Uncertainty in Structural Dynamics, USD 2016, Leuven, Belgium, pp. 2775–2784 (2016)

  24. Renson, L., Gonzalez-Buelga, A., Barton, D., Neild, S.: Robust identification of backbone curves using control-based continuation. J. Sound Vib. 367, 145–158 (2016). https://doi.org/10.1016/j.jsv.2015.12.035

    Article  Google Scholar 

  25. Renson, L., Shaw, A., Barton, D., Neild, S.: Application of control-based continuation to a nonlinear structure with harmonically coupled modes. Mech. Syst. Signal Process. 120, 449–464 (2019). https://doi.org/10.1016/j.ymssp.2018.10.008

    Article  Google Scholar 

  26. Renson, L., Sieber, J., Barton, D., Shaw, A., Neild, S.: Numerical continuation in nonlinear experiments using local gaussian process regression. Nonlinear Dyn. 98(4), 2811–2826 (2019). https://doi.org/10.1007/s11071-019-05118-y

    Article  MATH  Google Scholar 

  27. Schilder, F., Bureau, E., Santos, I., Thomsen, J., Starke, J.: Experimental bifurcation analysis—continuation for noise-contaminated zero problems. J. Sound Vib. 358, 251–266 (2015). https://doi.org/10.1016/j.jsv.2015.08.008

    Article  Google Scholar 

  28. Schwartz, I., Carr, T., Triandaf, I.: Tracking controlled chaos: theoretical foundations and applications. Chaos 7(4), 664–679 (1997). https://doi.org/10.1063/1.166285

    Article  MathSciNet  MATH  Google Scholar 

  29. Sieber, J., Gonzalez-Buelga, A., Neild, S., Wagg, D., Krauskopf, B.: Experimental continuation of periodic orbits through a fold. Phys. Rev. Lett. (2008). https://doi.org/10.1103/PhysRevLett.100.244101

    Article  Google Scholar 

  30. Sieber, J., Krauskopf, B.: Using feedback control and Newton iterations to track dynamically unstable phenomena in experiments. IFAC Proc. 42(7), 211–216 (2009). https://doi.org/10.3182/20090622-3-UK-3004.00041

    Article  Google Scholar 

  31. Solo, V.: On the stability of slowly time-varying linear systems. Math. Control Signals Syst. 7(4), 331–350 (1994). https://doi.org/10.1007/BF01211523

    Article  MathSciNet  MATH  Google Scholar 

  32. Song, M., Renson, L., Moaveni, B., Kerschen, G.: Bayesian model updating and class selection of a wing-engine structure with nonlinear connections using nonlinear normal modes. Mech. Syst. Signal Process. (2022). https://doi.org/10.1016/j.ymssp.2021.108337

  33. Tartaruga, I., Barton, D., Rezgui, D., Neild, S.: Experimental bifurcation analysis of a wing profile. In: Proceedings of the International Forum on Aeroelasticity and Structural Dynamics, IFASD 2019, Savannah, Georgia, USA (2019)

  34. Zaghari, B., Kniffka, T., Levett, C., Rustighi, E.: Parametrically excited nonlinear two-degree-of-freedom electromechanical systems. J. Phys: Conf. Ser. (2019). https://doi.org/10.1088/1742-6596/1264/1/012024

    Article  Google Scholar 

Download references

Funding

This work is supported by Agriculture and Food Research Initiative Competitive Grant no. 2014-67021-22109 from the USDA National Institute of Food and Agriculture. Part of the editing of this paper was performed while the second author served at the National Science Foundation. Any opinion, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to the conception and design of this research, and to the writing of the manuscript. Implementation of algorithms in code and generation of numerical results was performed by Yang Li. Both authors read and approved the final manuscript.

Corresponding author

Correspondence to Harry Dankowicz.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work is supported by Agriculture and Food Research Initiative Competitive Grant no. 2014-67021-22109 from the USDA National Institute of Food and Agriculture.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Dankowicz, H. Model-free continuation of periodic orbits in certain nonlinear systems using continuous-time adaptive control. Nonlinear Dyn 111, 4945–4957 (2023). https://doi.org/10.1007/s11071-022-08059-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-022-08059-1

Keywords

Navigation