Skip to main content
Log in

Vibration control of disturbance gap for maglev vehicle considering stiffness change under unsteady aerodynamic forces

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The unsteady aerodynamic force on a maglev vehicle increases sharply with the increase in speed of the maglev vehicle, which can increase the difficulty of electromagnetic suspension stability control. A single-degree-of-freedom model of the maglev vehicle is studied considering a periodic unsteady aerodynamic disturbance and the variation of carriage mass. The nonlinear dynamic differential equation of the maglev vehicle was derived with proportional and differential current controllers. It is found that the vibration proportional control gains can change the stiffness of the maglev control system, and three kinds of stiffness, such as positive, negative, and zero stiffness, are obtained for the maglev control systems. First, the dynamic control equation of positive stiffness of the maglev vehicle is analyzed by the multiple-scale method, and the amplitude–frequency response curve of the maglev vehicle is obtained. The vibration characteristics and stability of the maglev vehicle are analyzed. The displacement, speed control parameters, and equivalent mass of a maglev vehicle are the important parameters that affect the amplitude and stability of the vibration system. Second, the dynamic control equation of the negative stiffness system is studied for the maglev vehicle, and a bifurcation control method is obtained to change the system stiffness. The influence of speed control gain is studied numerically on the periodic and chaotic solutions, which the bifurcation parameter interval is found for the control gains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Data availability

Raw data were generated at the computing software of large-scale facility. Derived data supporting the findings of this study are available from the corresponding author upon request.

References

  1. Kong, E., Song, J.S., Kang, B.B., et al.: Dynamic response and robust control of coupled maglev vehicle and guideway system. J. Sound Vib. 330(25), 6237–6253 (2011)

    Article  Google Scholar 

  2. Yaseen, M.H.: A comparative study of stabilizing control of a planer electromagnetic levitation using PID and LQR controllers. Results Phys. 7, 4379–4387 (2017)

    Article  Google Scholar 

  3. Javadi, A., Alizadeh, G., Ghiasi, A.R., et al.: Robust control of electromagnetic levitation system. J. Control Autom. Electr. Syst. 25(5), 527–536 (2014)

    Article  Google Scholar 

  4. Wu, H., Zeng, X.H., Gao, D.G., et al.: Dynamic stability of an electromagnetic suspension maglev vehicle under steady aerodynamic load. Appl. Math. Model. 97, 483–500 (2021)

    Article  MATH  Google Scholar 

  5. Lindlau, J.D., Knospe, C.R.: Feedback linearization of an active magnetic bearing with voltage control. IEEE. Trans. Control Syst. Technol. 10(1), 21–31 (2002)

    Article  Google Scholar 

  6. Wang, S.M., Ni, Y.Q., Sun, Y.G., et al.: Modelling dynamic interaction of maglev train–controller–rail–bridge system by vector mechanics. J. Sound Vib. 533, 117023 (2022)

    Article  Google Scholar 

  7. Jeong, J.H., Ha, C.W., Lim, J., et al.: Analysis and control of electromagnetic coupling effect of levitation and guidance systems for semi-high-speed maglev train considering current direction. IEEE Trans. Magn. 53(6), 1–4 (2017)

    Article  Google Scholar 

  8. Chopade, A.S., Khubalkar, S.W., Junghare, A.S., et al.: Design and implementation of digital fractional order PID controller using optimal pole-zero approximation method for magnetic levitation system. IEEE/CAA J. Autom. Sin. 5(5), 977–989 (2018)

    Article  Google Scholar 

  9. Shieh, H.J., Siao, J.H., Liu, Y.C.: A robust optimal sliding-mode control approach for magnetic levitation systems. Asian J. Control 12(4), 480–487 (2010)

    Google Scholar 

  10. Sun, Y., Xu, J., Qiang, H., et al.: Adaptive sliding mode control of maglev system based on RBF neural network minimum parameter learning method. Measurement 141, 217–226 (2019)

    Article  Google Scholar 

  11. Sinha, P.K., Pechev, A.N.: Model reference adaptive control of a maglev system with stable maximum descent criterion. Automatica 35(8), 1457–1465 (1999)

    Article  MATH  Google Scholar 

  12. Vimala, S.A., Sathiyavathi, S.: Design of sliding mode controller for magnetic levitation system. Comput. Electr. Eng. 78, 184–203 (2019)

    Article  Google Scholar 

  13. Sun, N., Yang, T., Fang, Y.C., et al.: Transportation control of double-pendulum cranes with a nonlinear quasi-PID scheme: design and experiments. IEEE Trans. Syst. Man. Cybern Syst. 49(7), 1408–1418 (2019)

    Article  Google Scholar 

  14. Wang, L., Deng, Z., Kou, L., et al.: Stiffness characteristic of high temperature superconducting upper maglev system. Mech. Syst. Signal Process. 167, 108614 (2022)

    Article  Google Scholar 

  15. Bächle, T., Hentzelt, S., Graichen, K.: Nonlinear model predictive control of a magnetic levitation system. Control Eng. Pract. 21(9), 1250–1258 (2013)

    Article  Google Scholar 

  16. Jamshidi, H.R., Karimi, A., Haghshenas, M.: Risk assessment of particulate matters in a dentistry school using fuzzy inference systems. Measurement 116, 257–263 (2018)

    Article  Google Scholar 

  17. Su, X., Yang, X., Shi, P., et al.: Fuzzy control of nonlinear electromagnetic suspension systems. Mechatronics 24(4), 328–335 (2014)

    Article  Google Scholar 

  18. Sinha, P.K., Pechev, A.N.: Nonlinear H controllers for electromagnetic suspension systems. IEEE Trans. Autom. Control 49(4), 563–568 (2004)

    Article  MATH  Google Scholar 

  19. Sun, Y.G., Xu, J.Q., Chen, C., et al.: Fuzzy H robust control for magnetic levitation system of maglev vehicles based on TS fuzzy model: design and experiments. J. Intell. Fuzzy Syst. 36(2), 911–922 (2019)

    Article  Google Scholar 

  20. Yau, J.D.: Aerodynamic vibrations of a maglev vehicle running on flexible guideways under oncoming wind actions. J. Sound Vib. 329, 1743–1759 (2010)

    Article  Google Scholar 

  21. Colin, P.B., John, M.W., Benoit, R., et al.: Aerodynamics of urban maglev vehicles. Proc. Inst. Mech. Eng. Part F J. Rail Rapid Transit 226(6), 561–567 (2012)

    Article  Google Scholar 

  22. Gao, D.G., Ni, F., Lin, G.B., et al.: Aerodynamic analysis of pressure wave of high-speed maglev vehicle crossing modeling and calculation. Energies 12, 3770 (2019)

    Article  Google Scholar 

  23. Huang, S., Li, Z.W., Yang, M.Z.: Aerodynamics of high-speed maglev trains passing each other in open air. J. Wind Eng. Ind. Aerodyn. 188, 151–160 (2019)

    Article  Google Scholar 

  24. Zhou, P., Li, T., Zhao, C.F., et al.: Numerical study on the flow field characteristics of the new high-speed maglev train in open air. J. Zhejiang Univ. Sci. A 21(5), 366–381 (2020)

    Article  Google Scholar 

  25. Kwon, S.D., Lee, J.S., Moon, J.W., et al.: Dynamic interaction analysis of urban transit maglev vehicle and guide-way suspension bridge subjected to gusty wind. Eng. Struct. 30(12), 3445–3456 (2008)

    Article  Google Scholar 

  26. Wei, L., Zeng, J., Gao, H., et al.: On-board measurement of aerodynamic loads for high-speed trains negotiating transitions in windbreak walls. J. Wind Eng. Ind. Aerodyn. 222, 104923 (2022)

    Article  Google Scholar 

  27. Colin, P.B., John, M.W., Benoit, R., et al.: Aerodynamics of urban maglev vehicles. Proc. Inst. Mech. Eng. Part F: J. Rail Rapid Transit 226(6), 561–567 (2012)

    Article  Google Scholar 

  28. Ma, J.Q., Zhou, D.J., Zhao, L.F., et al.: The approach to calculate the aerodynamic drag of maglev train in the evacuated tube. J. Mod. Transport. 21(3), 200–208 (2013)

    Article  Google Scholar 

  29. Zheng, X.J., Wu, J.J., Zhou, Y.H.: Effect of spring non-linearity on dynamic stability of a controlled maglev vehicle and its guideway system. J. Sound Vib. 279, 201–215 (2005)

    Article  Google Scholar 

  30. Wang, L.C., Li, J.H., Zhou, D.F., et al.: An experimental validated control strategy of maglev vehicle-bridge self-excited vibration. Appl. Sci. 7(1), 38–45 (2017)

    Article  Google Scholar 

  31. Wang, H.P., Li, J., Zhang, K.: Non-resonant response, bifurcation and oscillation suppression of a non-autonomous system with delayed position feedback control. Nonlinear Dyn. 51, 447–464 (2008)

    Article  MATH  Google Scholar 

  32. Zhang, L.L., Huang, L.H., Zhang, Z.Z.: Hopf bifurcation of the maglev time-delay feedback system via pseudooscillator analysis. Math. Comput. Model. 52(5–6), 667–673 (2010)

    Article  MATH  Google Scholar 

  33. Hassard, B., Kazarinoff, N., Wan, Y.: Theory and applications of Hopf Bifurcation. Cambridge University Press, Cambridge (1981)

    MATH  Google Scholar 

  34. Wang, Z.H., Hu, H.Y.: Pseudo-oscillator analysis of scalar nonlinear time-delay systems near a Hopf bifurcation. Int. J. Bifurc. Chaos 17(8), 2805–2814 (2007)

    Article  MATH  Google Scholar 

  35. Luongo, A., Paolone, A.: Perturbation methods for bifurcation analysis from multiple nonresonant complex eigenvalues. Nonlinear Dyn. 14, 193–210 (1997)

    Article  MATH  Google Scholar 

  36. Luongo, A., Paolone, A., Di Egidio, A.: Multiple timescales analysis for 1:2 and 1:3 resonant Hopf bifurcations. Nonlinear Dyn. 34, 269–291 (2003)

    Article  MATH  Google Scholar 

  37. Zhang, L., Zhang, Z., Huang, L.: Double Hopf bifurcation of time-delayed feedback control for maglev system. Nonlinear Dyn. 69(3), 961–967 (2012)

    Article  Google Scholar 

  38. Wu, H., Zeng, X.H.: Nonlinear dynamics of malev vehicle under aerodynamic lift. Journal of mechanical engineering 57, 223–231 (2021). (in Chinese)

    Article  Google Scholar 

  39. Nayfeh, A.H., Chin, C., Nayfeh, S.A.: Nonlinear normal modes of a cantilever beam. J. Vib. Acoust. 117, 477–481 (1995)

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Natural Science Foundation of Shandong (ZR2020ME122).

Funding

Natural Science Foundation of Shandong, ZR2020ME122, Canchang Liu.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Canchang Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, C., Su, H., Wang, C. et al. Vibration control of disturbance gap for maglev vehicle considering stiffness change under unsteady aerodynamic forces. Nonlinear Dyn 111, 4267–4282 (2023). https://doi.org/10.1007/s11071-022-08054-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-022-08054-6

Keywords

Navigation