Skip to main content
Log in

A data-driven method for probabilistic response of vibro-impact system with bilateral barriers

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, a data-driven method is proposed to approximate the probability density function (PDF) of the response for the vibro-impact system with bilateral barriers. Non-smooth property is a challenge in random dynamical system, resulting in complex dynamics, such as discontinuous-induced singularity, grazing and chattering. The vibro-impact system is generally described as a hybrid form with discrete mapping and continuous differential equation. A non-smooth variable transformation is employed to rewritten this hybrid form to an equivalent piecewise version. For the obtained equivalent system, the Gaussian mixture model is proposed to approach the PDF governed by the Fokker–Planck–Kolmogorov (FPK) equation. The proposed algorithm can accurately simulate the PDF of the vibro-impact system with varied restitution coefficients within the theoretical difference allowed by the non-smooth variable transformation method. Taking account of the symmetry of the inverse transformation, the stationary PDF and moments of responses for the original system are obtained. Additionally, two examples are provided to demonstrate the efficiency and correctness of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data Availability

Availability of data and materials. Available by contacting the email.

References

  1. Ma, S.C., Wang, L., Ning, X., Yue, X.L., Xu, W.: Probabilistic responses of three-dimensional stochastic vibro-impact systems. Chaos Soliton Fract. 126, 308–314 (2019)

    Article  Google Scholar 

  2. Ibrahim, R.A.: Recent advances in vibro-impact dynamics and collision of ocean vessels. J. Sound Vib. 333, 5900–5916 (2014)

    Article  Google Scholar 

  3. Stefani, G., De Angelis, M., Andreaus, U.: Influence of the gap size on the response of a single-degree-of-freedom vibro-impact system with two-sided constraints: experimental tests and numerical modeling. Int. J. Mech. Sci. 206, 106617 (2021)

    Article  Google Scholar 

  4. Ibrahim, R.A.: Vibro-Impact Dynamics. Springer, Berlin, Heidelberg (2009)

    Book  MATH  Google Scholar 

  5. Zhuravlev, V.F.: A method for analyzing vibration-impact systems by means of special functions. Mech. Sol. 11, 23–27 (1976)

    Google Scholar 

  6. Ivanov, A.P.: Impact oscillations: linear theory of stability and bifurcations. J. Sound Vib. 178, 361–378 (1994)

    Article  MATH  Google Scholar 

  7. Dimentberg, M.F., Iourtchenko, D.V.: Random vibrations with impacts: a review. Nonlinear Dyn. 36, 229–254 (2004)

    Article  MATH  Google Scholar 

  8. Feng, J.Q., Xu, W., Rong, H.W., Wang, R.: Stochastic responses of duffing-van der pol vibro-impact system under additive and multiplicative random excitations. Int. J. Nonlinear Mech. 44, 51–57 (2009)

    Article  MATH  Google Scholar 

  9. Xiao, Y., Xu, W., Wang, L.: Stochastic responses of Van der Pol vibro-impact system with fractional derivative damping excited by Gaussian white noise. Chaos 26, 033110 (2016)

    Article  MATH  Google Scholar 

  10. Liu, D., Li, M., Li, J.L.: Probabilistic response and analysis for a vibro-impact system driven by real noise. Nonlinear Dyn. 91, 1261–1273 (2018)

    Article  Google Scholar 

  11. Su, M., Xu, W., Yang, G.: Response analysis of van der Pol vibro-impact system with coulomb friction under Gaussian white noise. Int. J. Bifurc. Chaos 28, 1830043 (2018)

    Article  MATH  Google Scholar 

  12. Hu, R., Gu, X., Deng, Z.: Stochastic response analysis of multi-degree-of-freedom vibro-impact system undergoing Markovian jump. Nonlinear Dyn. 101, 823–834 (2020)

    Article  Google Scholar 

  13. Liu, L., Xu, W., Yue, X.L., Han, Q.: Stochastic response of duffing-van der pol vibro-impact system with viscoelastic term under wide-band excitation. Chaos Soliton Fract. 104, 748–757 (2017)

    Article  MATH  Google Scholar 

  14. Ren, Z., Xu, W., Wang, D.: Dynamic and first passage analysis of ship roll motion with inelastic impacts via path integration method. Nonlinear Dyn. 97, 391–402 (2019)

    Article  Google Scholar 

  15. Di Paola, M., Bucher, C.: Ideal and physical barrier problems for non-linear systems driven by normal and Poissonian white noise via path integral method. Int. J. Nonlinear Mech. 81, 274–282 (2016)

    Article  Google Scholar 

  16. Wang, L., Peng, J., Wang, B., Xu, W.: The response of stochastic vibro-impact system calculated by a new path integration algorithm. Nonlinear Dyn. 104, 289–296 (2021)

    Article  Google Scholar 

  17. Zhu, H.T.: Probabilistic solution of vibro-impact systems under additive Gaussian white noise. J. Vib. Acoust. 136, 031018 (2014)

    Article  Google Scholar 

  18. Zhu, H.T.: Stochastic response of vibro-impact duffing oscillators under external and parametric Gaussian white noises. J. Sound Vib. 333, 954–961 (2014)

    Article  Google Scholar 

  19. Iourtchenko, D.V., Song, L.L.: Numerical investigation of a response probability density function of stochastic vibroimpact systems with inelastic impacts. Int. J. Nonlinear Mech. 41, 447–455 (2006)

    Article  MATH  Google Scholar 

  20. Kumar, P., Narayanan, S., Gupta, S.: Bifurcation analysis of a stochastically excited vibro-impact Duffing-Van der Pol oscillator with bilateral rigid barriers. Int. J. Mech. Sci. 127, 103–117 (2017)

    Article  Google Scholar 

  21. Chen, L., Zhu, H., Sun, J.Q.: Novel method for random vibration analysis of single-degree-of-freedom vibroimpact systems with bilateral barriers. Appl. Math. Mech Engl. 40, 1759–1776 (2019)

    Article  MATH  Google Scholar 

  22. Kumar, P., Narayanan, S.: Chaos and bifurcation analysis of stochastically excited discontinuous nonlinear oscillators. Nonlinear Dyn. 102, 927–950 (2020)

    Article  Google Scholar 

  23. Karniadakis, G.E., Kevrekidis, I.G., Lu, L., Perdikaris, P., Wang, S., Yang, L.: Physics-informed machine learning. Nat. Rev. Phys. 3, 422–440 (2021)

    Article  Google Scholar 

  24. Yuan, Y., Tang, X., Zhou, W., Pan, W., Li, X., Zhang, H.-T., Ding, H., Goncalves, J.: Data driven discovery of cyber physical systems. Nat. Commun. 10, 4894 (2019)

    Article  Google Scholar 

  25. Uy, W.I.T., Grigoriu, M.D.: Neural network representation of the probability density function of diffusion processes. Chaos 30, 093118 (2020)

    Article  MATH  Google Scholar 

  26. Xu, Y., Zhang, H., Li, Y., Zhou, K., Liu, Q., Kurths, J.: Solving Fokker-Planck equation using deep learning. Chaos 30, 013133 (2020)

    Article  MATH  Google Scholar 

  27. Alspach, D., Sorenson, H.: Nonlinear Bayesian estimation using Gaussian sum approximations. IEEE Trans. Autom. Control 17, 439–448 (1972)

    Article  MATH  Google Scholar 

  28. Sorenson, H.W., Alspach, D.L.: Recursive bayesian estimation using gaussian sums. Automatica 7, 465–479 (1971)

    Article  MATH  Google Scholar 

  29. Zhang, S., Chen, D., Fu, T., Cao, H.: Approximating posterior cramér-rao bounds for nonlinear filtering problems using gaussian mixture models. IEEE Trans. Aerosp. Electron. Syst. 57, 984–1001 (2020)

  30. Psiaki, M.L., Schoenberg, J.R., Miller, I.T.: Gaussian sum reapproximation for use in a nonlinear filter. J. Guid. Control Dyn. 38, 292–303 (2015)

  31. Sun, W.Q., Feng, J.Q., Su, J., Liang, Y.Y.: Data driven adaptive Gaussian mixture model for solving Fokker-Planck equation. Chaos 32, 033131 (2022)

  32. Dimentberg, M.F., Menyailov, A.I.: Response of a Single-mass vibroimpact System to White-noise random excitation. ZAMM J. Appl. Math. Mech. 59, 709–716 (1979)

    Article  MATH  Google Scholar 

  33. Eugene, W., Moshe, Z.: On the relation between ordinary and stochastic differential equations. Int. J. Eng. Sci. 3, 213–229 (1965)

    Article  Google Scholar 

  34. Bogachev, V., Krylov, N., Röckner, M., Shaposhnikov, S.: Fokker-Planck-Kolmogorov Equations. American Mathematical Society, Providence, Rhode Island (2015)

    Book  MATH  Google Scholar 

  35. Kumar, P., Narayanan, S., Gupta, S.: Stochastic bifurcations in a vibro-impact duffing-van der Pol oscillator. Nonlinear Dyn. 85, 439–452 (2016)

    Article  Google Scholar 

  36. Su, M., Niu, L., Zhang, W., Ren, Z., Xu, W.: A developed non-smooth coordinate transformation for general bilateral vibro-impact systems. Chaos 32, 043118 (2022)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Postgraduate Innovation Fund Project of Xi’an Polytechnic University (No. chx2022024), and the special research project of Shaanxi Education Statistics Research Center (No. 21jty08).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinqian Feng.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, W., Feng, J., Su, J. et al. A data-driven method for probabilistic response of vibro-impact system with bilateral barriers. Nonlinear Dyn 111, 4205–4219 (2023). https://doi.org/10.1007/s11071-022-08047-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-022-08047-5

Keywords

Navigation