Skip to main content
Log in

Novel y-type and hybrid solutions for the \((2+1)\)-dimensional Korteweg–de Vries–Sawada–Kotera–Ramani equation

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, the research object is \((2+1)\)-dimensional Korteweg–de Vries–Sawada–Kotera–Ramani (KdVSKR) equation. After adding new constraint, new solutions which contain y-type molecules are obtained. The process of lump molecules and y-type molecules before and after the collision is studied by long-wave limit method, and the kinetic behavior analysis is given. The interactions between y-type molecules and resonant soliton molecules, y-type molecules and breather molecules are obtained by combining velocity resonance method and mode resonance method, respectively. Finally, a novel hybrid solution containing lump molecule, breather molecule and y-type molecule is given, and the kinetic behavior is shown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. Tu, H., Wang, Y., Yang, C., Wang, X., Ma, S., Xiao, W., Liu, W.: A novel algorithm to solve for an underwater line source sound field based on coupled modes and a spectral method. J. Comput. Phys. 468, 111478 (2022)

    MATH  Google Scholar 

  2. Solli, D.R., Ropers, C., Koonath, P., Jalali, B.: Optical rogue waves. Nature. 450, 1054–1057 (2007)

    Google Scholar 

  3. Cotter, D., Manning, R.J., Blow, K.J., Ellis, A.D., Kelly, A.E., Nesset, D., Phillips, I.D., Poustie, A.J., Rogers, D.C.: Nonlinear optics for high-speed digital information processing. Science 286, 1523–1528 (1999)

    Google Scholar 

  4. Asghar, Z., Ali, N., Sajid, M.: Mechanical effects of complex rheological liquid on a microorganism propelling through a rigid cervical canal: swimming at low reynolds number. J. Braz. Soc. Mech. Sci. Eng. 40, 1–16 (2018)

    Google Scholar 

  5. Bi, D.D., Almpanis, A., Noel, A., Deng, Y.S., Schober, R.: A survey of molecular communication in cell biology: establishing a new hierarchy for interdisciplinary applications. IEEE Trans. Nucl. Sci. 23, 1494–1545 (2021)

    Google Scholar 

  6. Khan, R.A., Ullah, H., Raja, M.A.Z., Khan, M.A.R., Islam, S., Shoaib, M.: Heat transfer between two porous parallel plates of steady nano fludis with Brownian and Thermophoretic effects: a new stochastic numerical approach. Int. Commun. Heat Mass Transf. 126, 105436 (2021)

    Google Scholar 

  7. Khan, I., Ullah, H., AlSalman, H., Fiza, M., Islam, S., Shoaib, M., Raja, M.A.Z., Gumaei, A., Ikhlaq, F.: Fractional analysis of MHD boundary layer flow over a stretching sheet in porous medium: a new stochastic method. J. Funct. Spaces (2021). https://doi.org/10.1155/2021/5844741

    Article  MATH  Google Scholar 

  8. Khan, I., Ullah, H., AlSalman, H., Fiza, M., Islam, S., Raja, A.Z., Shoaib, M., Gumaei, A.H.: Falkner–Skan equation with heat transfer: a new stochastic numerical approach. Math. Probl. Eng. (2021). https://doi.org/10.1155/2021/3921481

    Article  MATH  Google Scholar 

  9. Bilal, H., Ullah, H., Fiza, M., Islam, S., Raja, M.A.Z., Shoaib, M., Khan, I.: A Levenberg–Marquardt backpropagation method for unsteady squeezing flow of heat and mass transfer behaviour between parallel plates. Adv. Mech. Eng. 13, 1–15 (2021)

    Google Scholar 

  10. Ullah, H., Khan, I., Fiza, M., Hamadneh, N.N., Asad, F.M.A., Islam, S., Khan, I., Raja, M.A.Z., Shoaib, M.: MHD boundary layer flow over a stretching sheet: a new stochastic method. Math. Probl. Eng. 2021, 1–26 (2021)

    Google Scholar 

  11. Ullah, H., Khan, I., AlSalman, H., Islam, S., Raja, M.A.Z., Shoaib, M., Gumaei, A., Fiza, M., Ullah, K., Rahman, M., Ayaz, M.: Levenberg–Marquardt backpropagation for numerical treatment of micropolar flow in a porous channel with mass injection. Complexity (2021). https://doi.org/10.1155/2021/5337589

    Article  MATH  Google Scholar 

  12. Ullah, H., Shoaib, M., Akbar, A., Raja, M.A.Z., Islam, S., Nisar, K.S.: Neuro-computing for hall current and MHD effects on the flow of micro-polar nano-fluid between two parallel rotating plates. Arab. J. Sci. Eng. (2022). https://doi.org/10.1007/s13369-022-06925-z

    Article  Google Scholar 

  13. Ullah, H., Fiza, M., Raja, M.A.Z., Khan, I., Shoaib, M., Mekhlafi, S.M.A.: Intelligent computing of Levenberg–Marquard technique backpropagation neural networks for numerical treatment of squeezing nanofluid flow between two circular plates. Math. Probl. Eng. (2022). https://doi.org/10.1155/2022/9451091

    Article  Google Scholar 

  14. Shoaib, M., Khan, R.A., Ullah, H., Nisar, K.S., Raja, M.A.Z., Islam, S., Felemban, B.E., Yahia, I.S.: Heat transfer impacts on Maxwell nanofluid flow over a vertical moving surface with MHD using stochastic numerical technique via artificial neural networks. Coatings 11, 1483 (2021)

    Google Scholar 

  15. Ullah, H., Fiza, M., Khan, I., Alshammari, N., Hamadneh, N.N., Islam, S.: Modification of the optimal auxiliary function method for solving fractional order KdV equations. Fractal Fraction. 6, 288 (2022)

    Google Scholar 

  16. Zuo, J., Zhang, Y.: The Hirota bilinear method for the coupled Burgers equation and the high-order Boussinesq–Burgers equation. Chin. Phys. B 20, 010205 (2011)

    Google Scholar 

  17. Wazwaz, A.M.: Multiple-soliton solutions for the KP equation by Hirota’s bilinear method and by the tanh–coth method. Appl. Math. Comput. 190, 633–640 (2007)

    MATH  Google Scholar 

  18. Ma, W.: N-soliton solution of a combined pKP–BKP equation. J. Comput. Phys. 165, 104191 (2021)

    MATH  Google Scholar 

  19. Ma, H., Deng, A.: Lump solution of \((2+1)\)-dimensional Boussinesq equation. Commun. Theor. Phys. 65, 546–552 (2016)

    MATH  Google Scholar 

  20. Chen, S., Ma, W.: Lump solutions to a generalized Bogoyavlensky–Konopelchenko equation. Front. Math. China. 13, 525–534 (2018)

    MATH  Google Scholar 

  21. Deng, G., Gao, Y., Ding, C., Su, J.: Solitons and breather waves for the generalized Konopelchenko–Dubrovsky–Kaup–Kupershmidt system in fluid mechanics, ocean dynamics and plasma physics. Chaos Solitons Fractals 140, 110085 (2020)

    MATH  Google Scholar 

  22. Guo, B., Ling, L., Liu, Q.: Nonlinear Schrödinger equation: generalized Darboux transformation and rogue wave solutions. Phys. Rev. E 85, 026607 (2012)

    Google Scholar 

  23. Lou, S.: Soliton molecules and asymmetric solitons in three fifth order systems via velocity resonance. J. Phys. Commun. 4, 041002 (2020)

    Google Scholar 

  24. Ma, H., Gao, Y., Deng, A.: D’Alembert wave and soliton molecule of the generalized Nizhnik–Novikov–Veselov equation. Mod. Phys. Lett. B 35, 2150482 (2021)

    Google Scholar 

  25. Zhu, J., Wang, B., Ma, Z., Fei, J.: Soliton molecules and some related interaction solutions of the \((2+1)\)-dimensional Kadomtsev–Petviashvili hierarchy. Mod. Phys. Lett. B 35, 2150106 (2021)

    Google Scholar 

  26. Liu, W., Wazwaz, A.M., Zheng, X.: Families of semi-rational solutions to the Kadomtsev–Petviashvili I equation. Commun. Nonlinear Sci. 67, 480–491 (2019)

    MATH  Google Scholar 

  27. Yang, X., Fan, R., Li, B.: Soliton molecules and some novel interaction solutions to the \((2+1)\)-dimensional B-type Kadomtsev–Petviashvili equation. Phys. Scr. 95, 045213 (2020)

    Google Scholar 

  28. Ma, H., Cheng, Q., Deng, A.: Soliton molecules and some novel hybrid solutions for the \((2+1)\)-dimensional generalized Konopelchenko–Dubrovsky-Kaup-Kupershmidt equation. Commun. Theor. Phys. 72, 095001 (2020)

    Google Scholar 

  29. Jia, M., Lin, J., Lou, S.: Soliton and breather molecules in few-cycle-pulse optical model. Nonlinear Dyn. 100, 3745–3757 (2020)

    Google Scholar 

  30. Dong, J., Li, B., Yuen, M.: Soliton molecules and mixed solutions of the \((2+1)\)-dimensional bidirectional Sawada–Kotera equation. Commun. Theor. Phys. 72, 025002 (2020)

    MATH  Google Scholar 

  31. Li, W., Li, J., Li, B.: Soliton molecules, asymmetric solitons and some new types of hybrid solutions in \((2+1)\)-dimensional Sawada–Kotera model. Mod. Phys. Lett. B 34, 2050141 (2020)

    Google Scholar 

  32. Wang, S., Tang, X., Lou, S.: Soliton fission and fusion: Burgers equation and Sharma–Tasso–Olver equation. Chaos Solitons Fractals 21, 231–239 (2004)

    MATH  Google Scholar 

  33. Chen, A.: Multi-kink solutions and soliton fission and fusion of Sharma–Tasso–Olver equation. Phys. Lett. A 374, 2340–2345 (2010)

    MATH  Google Scholar 

  34. Wang, Y., Tian, B., Jiang, Y.: Soliton fusion and fission in a generalized variable-coefficient fifth-order Korteweg–de Vries equation in fluids. Appl. Math. Comput. 292, 448–456 (2017)

    MATH  Google Scholar 

  35. Chen, A., Wang, F.: Fissionable wave solutions, lump solutions and interactional solutions for the \((2+1)\)-dimensional Sawada–Kotera equation. Phys. Scr. 94, 055206 (2019)

    Google Scholar 

  36. Zhao, Z., He, L.: Resonance Y-type soliton and hybrid solutions of a (2+1)-dimensional asymmetrical Nizhnik–Novikov–Veselov equation. Appl. Math. Lett. 122, 107497 (2021)

    MATH  Google Scholar 

  37. Wang, M., Qi, Z., Chen, J., Li, B.: Resonance Y-shaped soliton and interaction solutions in the \((2+1)\)-dimensional B-type Kadomtsev–Petviashvili equation. Int. J. Mod. Phys. B 35, 2150222 (2021)

    MATH  Google Scholar 

  38. Ma, H., Yue, S., Deng, A.: Resonance Y-shape solitons and mixed solutions for a \((2+1)\)-dimensional generalized Caudrey–Dodd–Gibbon–Kotera–Sawada equation in fluid mechanics. Nonlinear Dyn. 108, 505–519 (2022)

    Google Scholar 

  39. Shen, Y., Tian, B., Liu, S.: Solitonic fusion and fission for a \((3+1)\)-dimensional generalized nonlinear evolution equation arising in the shallow water waves. Phys. Lett. A 405, 127429 (2021)

    MATH  Google Scholar 

  40. Zhu, C., Long, C., Zhou, Y., Wei, P., Ren, B., Wang, W.: Dynamics of multi-solitons, multi-lumps and hybrid solutions in \((2+1)\)-dimensional Korteweg–de Vries–Sawada–Kotera–Ramani equation. Results Phys. 34, 105248 (2022)

    Google Scholar 

  41. Wei, P., Long, C., Zhu, C., Zhou, Y., Yu, H., Ren, B.: Soliton molecules, multi-breathers and hybrid solutions in (2+1)-dimensional Korteweg–de Vries–Sawada–Kotera–Ramani equation. Chaos Solitons Fractals 158, 112062 (2022)

    Google Scholar 

  42. Osman, S.M.: Analytical study of rational and double-soliton rational solutions governed by the KdV–Sawada–Kotera–Ramani equation with variable coefficients. Nonlinear Dyn. 89, 2283–2289 (2017)

    Google Scholar 

  43. Xiong, N., Yu, Y., Li, B.: Soliton molecules and full symmetry groups to the KdV–Sawada–Kotera–Ramani equation. Adv. Math. Phys. 2021, 5534996 (2021)

    MATH  Google Scholar 

  44. Zhang, L., Khalique, C.M.: Exact solitary wave and quasi-periodic wave solutions of the KdV–Sawada–Kotera–Ramani equation. Adv. Differ. Equ. 2015, 1–12 (2015)

    MATH  Google Scholar 

  45. Ma, P., Tian, S., Zhang, T., Zhang, X.: On lie symmetries, exact solutions and integrability to the KdV–Sawada–Kotera–Ramani equation. Eur. Phys. J. Plus 131, 1–15 (2016)

    Google Scholar 

  46. Kato, T.: On the Korteweg–de Vries equation. Manuscr. Math. 28, 89–99 (1979)

    MATH  Google Scholar 

  47. Ma, W.: Complexiton solutions to the Korteweg–de Vries equation. Phys. Lett. A 301, 35–44 (2002)

    MATH  Google Scholar 

  48. Li, Y., Yao, R., Xia, Y., Lou, S.: Plenty of novel interaction structures of soliton molecules and asymmetric solitons to \((2+1)\)-dimensional Sawada–Kotera equation. Commun. Nonlinear Sci. Numer. Simul. 100, 105843 (2021)

    MATH  Google Scholar 

  49. Lai, X., Cai, X.: Adomian decomposition method for approximating the solutions of the bidirectional Sawada–Kotera equation. Z. Med. Phys. 65, 658–664 (2010)

    Google Scholar 

  50. Wang, X., Zhao, Q., Jia, M., Lou, S.: Novel travelling wave structures for \((2+1)\)-dimensional Sawada–Kotera equation. Appl. Math. Lett. 124, 107638 (2022)

    MATH  Google Scholar 

  51. Zhang, Z., Yang, S., Li, B.: Soliton molecules, asymmetric solitons and hybrid solutions for \((2+1)\)-dimensional fifth-order KdV equation. Chin. Phys. Lett. 36, 120501 (2019)

    Google Scholar 

  52. Hu, X., Miao, Z., Lin, S.: Solitons molecules, lump and interaction solutions to a \((2+1)\)-dimensional Sharma–Tasso–Olver–Burgers equation. Chin. J. Phys. 74, 175–183 (2021)

    Google Scholar 

  53. Cui, Y., Wang, L., Gegen, H.: M-breather, M-lump, breather molecules and their interaction solutions for a (2+1)-dimensional KdV equation. Phys. Scr. 96, 095211 (2021)

    Google Scholar 

  54. Zhao, Z., He, L.: A new type of multiple-lump and interaction solution of the Kadomtsev-Petviashvili I equation. Nonlinear Dyn. 109, 1033–1046 (2022)

    Google Scholar 

  55. Zhang, Z., Guo, Q., Li, B., Chen, J.: A new class of nonlinear superposition between lump waves and other waves for Kadomtsev-Petviashvili I equation. Commun. Nonlinear Sci. Numer. Simul. 101, 105866 (2021)

    MATH  Google Scholar 

  56. Ma, H., Yue, S., Deng, A.: Nonlinear superposition between lump and other waves of the \((2+1)\)-dimensional generalized Caudrey–Dodd–Gibbon–Kotera–Sawada equation in fluid dynamics. Nonlinear Dyn. 109, 1969–1983 (2022)

    Google Scholar 

  57. Qi, Z., Chen, Q., Wang, M., Li, B.: New mixed solutions generated by velocity resonance in the \((2+1)\)-dimensional Sawada–Kotera equation. Nonlinear Dyn. 108, 1617–1626 (2022)

    Google Scholar 

  58. Kasamatsu, K., Takeuchi, H., Nitta, M.: D-brane solitons and boojums in field theory and Bose–Einstein condensates. J. Phys.: Condens. Matter 25, 404213 (2013)

    Google Scholar 

  59. Marwan, A.R.: Applying fractional quantum mechanics to systems with electrical screening effects. Chaos Solitons Fractals 150, 111209 (2021)

    Google Scholar 

  60. Das, T., Ghosh, U., Sarkar, S., Das, S.: Analytical study of D-dimensional fractional Klein–Gordon equation with a fractional vector plus a scalar potential. Pramana 94, 1–10 (2020)

    Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongcai Ma.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, H., Gao, Y. & Deng, A. Novel y-type and hybrid solutions for the \((2+1)\)-dimensional Korteweg–de Vries–Sawada–Kotera–Ramani equation. Nonlinear Dyn 111, 4645–4656 (2023). https://doi.org/10.1007/s11071-022-08045-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-022-08045-7

Keywords

Navigation