Skip to main content
Log in

New insights into dynamic instability regions of spillway radial gate owing to fluid-induced parametric oscillation

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Spillway radial gate, a spatial frame structure, plays an important role in flood prevention and sustainable energy system. Dynamic instability mechanism of the spillway radial gate, excited by quasi-periodic hydrodynamic loads, remains unclear. In this work, an efficient numerical method, for analyzing dynamic stability of discretized model, is developed. Furthermore, a comprehensive investigation on the dynamic instability regions of struts and frame structure in the spillway radial gate, performed in discrete model, is provided. Specifically, the presented discrete finite element model and developed numerical method are validated by using numerical simulation in ANSYS software and definitive works from Bolotin. The out-of-plane vibration of struts and frame structure render dynamic instability of the spillway radial gate. The mode-coupling dynamic instability regions of frame structure are revealed, which is ignored in the dynamic instability analysis of struts and the analytical solution of radial gate structure as well. Long-term quasi-stable state exists in parametric resonance response, threatening the reliability of structural health diagnosis based on monitoring data for radial gates structure. From the comparison of strut and frame structure, it is shown that the dynamic instability regions of frame structure are more dense and complicated, close to the dominant frequency of external hydrodynamic loads during water discharging. The proposed insights highlight the importance of analyzing frame structure’s dynamic stability in evaluating the safety of radial gate structure, as the corresponding dynamic stability characteristics are generally ignored in current works.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The datasets generated during the current study are available from the corresponding author on reasonable request.

Abbreviations

L girder, L strut :

Length

m :

Mass per unit length

E :

Elastic modulus

θ :

Excitation frequency of external periodic load

λ cr :

Buckling load factor

P cr :

Buckling load

P 0 :

Static load in buckling analysis

k :

Dimension of the solution

Ω:

Characteristic exponent

Δ:

Difference value

φ i :

i-Th vibration mode

P(t):

External dynamic load

P s :

Static component in dynamic load

P d :

Dynamic component in dynamic load

K, b 0, a k, b k :

Constants

w i :

i-Th order natural frequency

Δ{δ}:

Buckling mode

β :

Dynamic load factor

f u :

Critical instability frequency

Q :

Nodal displacement vector

I :

Identity matrix

Q(t):

Solution of equation

M, M e :

Mass matrices

K :

Stiffness matrices

K E, K e E :

Elastic stiffness matrices

K G, K e G :

Geometric stiffness matrices

\({\mathbf{K}}_{G}^{s}\) :

Geometric stiffness matrices by static component

\({\mathbf{K}}_{G}^{t}\) :

Geometric stiffness matrices by dynamic component

References

  1. He, Y.: The present situation and developing trend of gates in the world. J. Northwest A&F University (Nat. Sci. Ed) 19, 85–93 (1991). http://www.xnxbz.net/xbnlkjdxzr/ch/reader/view_abstract.aspx?file_no=19910476&flag=1

  2. Yan, S.: Dynamic characteristics of tainter gates and their optimization. J. Struct. Eng. 117, 3261–3273 (1991). https://doi.org/10.1061/(ASCE)0733-9445(1991)117:11(3261)

    Article  Google Scholar 

  3. Zhang, J., Liu, G.: Light radial steel gate accident analysis. J Hydroele Eng. 11, 49–57 (1992). https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CJFD&dbname=CJFD9093&filename=SFXB199203005

  4. Ishii, N., Anami, K., Knisely, C.W.: Dynamic Stability of Hydraulic Gates and Engineering for Flood Prevention. IGI Global, Hershey (2017)

    Google Scholar 

  5. Wang, Z., Xu, C.: Overview on global applications of large-span storm surge barriers. J. Yangtze River Sci. Res. Inst. 35(12): 1 (2018). https://doi.org/10.11988/ckyyb.20180890

  6. Xu, C., Wang, Z.: Shape optimization of large-span floating sector gate based on multi-island genetic algorithm. In: The 30th International Ocean and Polar Engineering Conference (2020) ISOPE-I-20-3305. https://onepetro.org/ISOPEIOPEC/proceedings-abstract/ISOPE20/All-ISOPE20/ISOPE-I-20-3305/446697

  7. Schiermeier, Q., Tollefson, J., Scully, T., Witze, A., Morton, O.: Electricity without carbon. Nature 454, 816–824 (2008). https://doi.org/10.1038/454816a

    Article  Google Scholar 

  8. Yang, W., Norrlund, P., Saarinen, L., Witt, A., Smith, B., Yang, J., Lundin, U.: Burden on hydropower units for short-term balancing of renewable power systems. Nat. Commun. 9, 1–12 (2018). https://doi.org/10.1038/s41467-018-05060-4

    Article  Google Scholar 

  9. Wang, Z., Wen, X., Tan, Q., Fang, G., Lei, X., Wang, H., Yan, J.: Potential assessment of large-scale hydro-photovoltaic-wind hybrid systems on a global scale. Renew. Sustain. Energy Rev. 146, 111154 (2021). https://doi.org/10.1016/j.rser.2021.111154

    Article  Google Scholar 

  10. DeConto, R.M., Pollard, D.: Contribution of Antarctica to past and future sea-level rise. Nature 531, 591–597 (2016). https://doi.org/10.1038/nature17145

    Article  Google Scholar 

  11. Zhu, Z., Vuik, V., Visser, P.J., Soens, T., van Wesenbeeck, B., van de Koppel, J., Jonkman, S.N., Temmerman, S., Bouma, T.J.: Historic storms and the hidden value of coastal wetlands for nature-based flood defence. Nat. Sustain. 3, 853–862 (2020). https://doi.org/10.1038/s41893-020-0556-z

    Article  Google Scholar 

  12. Calafat, F.M., Wahl, T., Tadesse, M.G., Sparrow, S.N.: Trends in Europe storm surge extremes match the rate of sea-level rise. Nature 603, 841–845 (2022). https://doi.org/10.1038/s41586-022-04426-5

    Article  Google Scholar 

  13. Del-Rosal-Salido, J., Folgueras, P., Bermúdez, M., Ortega-Sánchez, M., Losada, M.: Flood management challenges in transitional environments: assessing the effects of sea-level rise on compound flooding in the 21st century. Coast. Eng. 167, 119844 (2021). https://doi.org/10.1016/j.coastaleng.2021.103872

    Article  Google Scholar 

  14. Ishii, N., Anami, K., Knisely, C.W.: Retrospective consideration of a plausible vibration mechanism for the failure of the Folsom Dam Tainter gate. Int. J. Mech. Eng. Robotics Res. 3(4), 314–345 (2014)

    Google Scholar 

  15. Hartford, D.N., Baecher, G.B., Zielinski, P.A., Patev, R.C., Ascila, R., Rytters, K.: Flow control failures in dam safety. Oper. Saf. Dams Reserv. 3–26 (2016). https://doi.org/10.1680/osdr.61217.003

  16. Abela, C.M.: Recommendations on building and evaluating three-dimensional finite-element models for tainter gates. Pract. Period. Struct. Des. Constr. 22, 04016016 (2017). https://doi.org/10.1061/(asce)sc.1943-5576.0000300

    Article  Google Scholar 

  17. Göbel, G., Gebhardt, M., Deutscher, M., Metz, W., Thorenz, C.: Description of some seal vibration problems at hydraulic gates on German waterways. In: 7th IAHR Int. Symp. Hydraul. Struct. ISHS 2018, pp. 617–626 (2018). https://doi.org/10.15142/T34D2G

  18. Wieland, M.: Safety aspects of sustainable storage dams and earthquake safety of existing dams. Engineering 2, 325–331 (2016). https://doi.org/10.1016/J.ENG.2016.03.011

    Article  Google Scholar 

  19. Naudascher, E., Rockwell, D.: Flow-Induced Vibrations: An Engineering Guide. A.A. Balkema Publishers, Rotterdam (2017)

    Google Scholar 

  20. Naudascher, E., Hsu, C.S.: Flow-induced structural vibrations. J. Appl. Mech. 42, 523–524 (1975). https://doi.org/10.1115/1.3423635

    Article  Google Scholar 

  21. Hardwick, J.D.: Flow-induced vibration of vertical-lift gate. J. Hydraul. Div. 100, 631–644 (1974). https://doi.org/10.1061/JYCEAJ.0003950

    Article  Google Scholar 

  22. Weaver, D.S., Ziada, S.: A theoretical model for self-excited vibrations in hydraulic gates, valves and seals. J. Press. Vessel Technol. Trans. ASME. 102, 146–161 (1980). https://doi.org/10.1115/1.3263313

    Article  Google Scholar 

  23. Kolkman, P.A.: A simple scheme for calculating the added mass of hydraulic gates. J. Fluids Struct. 2, 339–353 (1988). https://doi.org/10.1016/S0889-9746(88)90051-5

    Article  Google Scholar 

  24. Jongeling, T.H.G.: Flow-induced self-excited in-flow vibrations of gate plates. J. Fluids Struct. 2, 541–566 (1988). https://doi.org/10.1016/S0889-9746(88)80022-7

    Article  Google Scholar 

  25. Thang, N.D.: Gate vibrations due to unstable flow separation. J. Hydraul. Eng. 116, 342–361 (1990). https://doi.org/10.1061/(asce)0733-9429(1990)116:3(342)

    Article  Google Scholar 

  26. Ishii, N., Naudascher, E.: A design criterion for dynamic stability of Tainter gates. J. Fluids Struct. 6, 67–84 (1992). https://doi.org/10.1016/0889-9746(92)90056-9

    Article  Google Scholar 

  27. Anami, K., Ishii, N., Knisely, C.W., Oku, T.: Design guidelines for dynamic stability of tainter gates. Am. Soc. Mech. Eng. Press. Vessel. Pip. Div. PVP. 4, 1–9 (2017). https://doi.org/10.1115/PVP2017-65325

    Article  Google Scholar 

  28. Lee, S.O., Seong, H., Kang, J.W.: Flow-induced vibration of a radial gate at various opening heights. Eng. Appl. Comput. Fluid Mech. 12, 567–583 (2018). https://doi.org/10.1080/19942060.2018.1479662

    Article  Google Scholar 

  29. Tieleman, O.C., Tsouvalas, A., Hofland, B., Peng, Y., Jonkman, S.N.: A three dimensional semi-analytical model for the prediction of gate vibrations immersed in fluid. Mar. Struct. 65, 134–153 (2019). https://doi.org/10.1016/j.marstruc.2018.12.007

    Article  Google Scholar 

  30. Lian, J., Chen, L., Ma, B., Liang, C.: Analysis of the cause and mechanism of hydraulic gate vibration during flood discharging from the perspective of structural dynamics. Appl. Sci. 10, 629 (2020). https://doi.org/10.3390/app10020629

    Article  Google Scholar 

  31. Liu, Y., Ni, H., Liu, B., Liu, Y.: Research on dynamic instability of Tainter gates. J. Dalian Univ. Technol. 46, 93–97 (2006). https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CJFD&dbname=CJFD2006&filename=DLLG200601018

  32. Xu, C., Wang, Z., Zhang, H., Li, H., Li, D.: Investigation on mode-coupling parametric vibrations and instability of spillway radial gates under hydrodynamic excitation. Appl. Math. Model. 106, 715–741 (2022). https://doi.org/10.1016/j.apm.2022.02.013

    Article  MATH  Google Scholar 

  33. Liu, J., Wang, Z., Fang, X., Fang, H.: Dynamic instability mechanism and vibration control of radial gate arms. Appl. Mech. Mater. 50–51, 309–313 (2011). https://doi.org/10.4028/www.scientific.net/AMM.50-51.309

    Article  Google Scholar 

  34. Yan, G., Chen, F., Zhao, J.: Prototype observation study on the flow-induced vibration of surface radial gate. J. Hydroelectr. Eng. 25, 45–50 (2006). https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CJFD&dbname=CJFD2006&filename=SFXB200604009

  35. Niu, Z., Li, T., Zhao, L., Niu, Z.: Finite element analysis of parametric vibration of radial gate. J. Hydroelectr. Eng. 27, 101–105 (2008). https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CJFD&dbname=CJFD2008&filename=SFXB200806020

  36. Bolotin, V.V.: Dynamic Stability of Elastic Systems. Moscow (1956). English translation by Holden-Day, California, 1964

  37. Bolotin, V.V., Weingarten, V.I., Greszczuk, L.B., Trigoroff, K.N., Gallegos, K.D., Cranch, E.T.: Dynamic stability of elastic systems. J. Appl. Mech. 32, 718–718 (1965). https://doi.org/10.1115/1.3627306

    Article  Google Scholar 

  38. Ministry of Water Resources of the People's Republic of China, Specification for design of steel gate in hydraulic and hydroelectric engineering: SL 74-2019. China Water & Power Press, Beijing (2019)

  39. Briseghella, L., Majorana, C.E., Pellegrino, C.: Dynamic stability of elastic structures: a finite element approach. Comput. Struct. 69, 11–25 (1998). https://doi.org/10.1016/S0045-7949(98)00084-4

    Article  MATH  Google Scholar 

  40. Hsu, C.S.: On the parametric excitation of a dynamic system having multiple degrees of freedom. J. Appl. Mech. Trans. ASME. 30, 367–372 (1960). https://doi.org/10.1115/1.3636563

    Article  MATH  Google Scholar 

  41. Hsu, C.S., Cheng, W.H.: Applications of the theory of impulsive parametric excitation and new treatments of general parametric excitation problems. J. Appl. Mech. Trans. ASME. 40, 78–86 (1973). https://doi.org/10.1115/1.3422976

    Article  MATH  Google Scholar 

  42. Arafat, H.N., Nayfeh, A.H., Chin, C.M.: Nonlinear nonplanar dynamics of parametrically excited cantilever beams. Nonlinear Dyn. 15, 31–61 (1998). https://doi.org/10.1023/A:1008218009139

    Article  MATH  Google Scholar 

  43. Abou-Rayan, A.M., Nayfeh, A.H., Mook, D.T., Nayfeh, M.A.: Nonlinear response of a parametrically excited buckled beam. Nonlinear Dyn. 4, 499–525 (1993). https://doi.org/10.1007/BF00053693

    Article  Google Scholar 

  44. Nayfeh, A.H.: Response of two-degree-of-freedom systems to multifrequency parametric excitations. J. Sound Vib. 88 (1983). https://doi.org/10.1016/0022-460X(83)90674-0

  45. Wang, Z., Zhang, X., Liu, J.: Advances and developing trends in research of large hydraulic steel gates. J. Hydroelectr. Eng. 36, 1–18 (2017). https://doi.org/10.11660/slfdxb.20171001

    Article  Google Scholar 

  46. Xu, C., Wang, Z., Li, H.: Direct FE numerical simulation for dynamic instability of frame structures. Int. J. Mech. Sci. 107732 (2022). https://doi.org/10.1016/j.ijmecsci.2022.107732

  47. Liu, J., Liu, Y., Wang, Z.: Calculation models and analysis methods of the parametric vibration of radial gates. IOP Conf. Ser. Earth Environ. Sci. 304 (2019). https://doi.org/10.1088/1755-1315/304/2/022078

  48. Xu, C., Wang, Z., Li, B.: Dynamic stability of simply supported beams with multi-harmonic parametric excitation. Int. J. Struct. Stab. Dyn. 21, 1–29 (2021). https://doi.org/10.1142/S0219455421500279

    Article  Google Scholar 

Download references

Acknowledgements

This work has been supported by funding from the National Natural Science Foundation of China (Grant No. 51179164), and Natural Science Foundation of Shaanxi province of China (Grant No. 2022JM-234). These supports are gratefully acknowledged. The first author (Dr. Chao Xu) would like to express appreciation to his beloved family and Yandan Wang for their support of this manuscript. The authors thank Dr. Huijun Li, Dr. Baohui Li, and Dr. Dongfeng Li for their kind help. The authors appreciate the editor and anonymous reviewers for their constructive comments in improving the quality of the manuscript.

Funding

This work has been supported by funding from the Key Programme (Grant No. 51179164), and Natural Science Foundation of Shaanxi Province (Grant No. 2022JM-234).

Author information

Authors and Affiliations

Authors

Contributions

Chao Xu contributed to conceptualization, methodology, software, validation, formal analysis, investigation, writing—original draft, writing—review & editing, and funding acquisition. Zhengzhong Wang contributed to writing—review & editing, methodology and funding acquisition.

Corresponding author

Correspondence to Chao Xu.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, C., Wang, Z. New insights into dynamic instability regions of spillway radial gate owing to fluid-induced parametric oscillation. Nonlinear Dyn 111, 4053–4070 (2023). https://doi.org/10.1007/s11071-022-08040-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-022-08040-y

Keywords

Navigation