Skip to main content
Log in

A generalized (2+1)-dimensional Hirota bilinear equation: integrability, solitons and invariant solutions

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, we consider an extended form of generalized \((2+1)\)-dimensional Hirota bilinear equation which demonstrates nonlinear wave phenomena in shallow water, oceanography and nonlinear optics. We have successfully studied the integrability characteristic of the nonlinear equation in different aspects. We have applied the Painlevè analysis technique on the equation and found that it is not completely integrable in Painlevè sense. The concept of Bell polynomial form is introduced and the Hirota bilinear form, Bäcklund transformations are obtained. By means of Cole-Hopf transformation, we have derived the Lax pairs by direct linearization of coupled system of binary Bell polynomials. We have also derived infinite conservation laws from two field condition of the generalized \((2+1)\)-dimensional Hirota bilinear equation. We have exploited the expressions of one-soliton, two-soliton and three-soliton solutions directly from Hirota bilinear form and demonstrated them pictorially. Further, Lie symmetry approach is applied to analyze the Lie symmetries and vector fields of the considered problem. The symmetry reductions were then obtained using similarity variables and some closed-form solutions such as parabolic wave solutions and kink wave solutions are secured.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this article.

Abbreviations

KdV:

Korteweg de-vries

KP:

Kadomtsev–Petviashvili

mKdV:

Modified Korteweg de-vries

PDE:

Partial differential equation

ODE:

Ordinary differential equation

WTC:

Weiss–Tabor–Carnevale

References

  1. Korteweg, D.J., De Vries, G.: On the Change of Form of Long Waves Advancing in a Rectangular Canal, and on a New Type of Long Stationary Waves, Philos. Mag. London 5, 422–443 (1895)

    MATH  Google Scholar 

  2. Schrödinger, E.: An undulatory theory of the mechanics of atoms and molecules. Phys. Rev. 28, 1049–1070 (1926)

    Google Scholar 

  3. Kadomtsev, B.B., Petviashvili, V.I.: On the stability of solitary waves in weakly dispersing media. Sov. Phys. Dokl. 192, 753–756 (1970)

    MATH  Google Scholar 

  4. Bando, M., Hasebe, K., Nakayama, A., Shibata, A., Sugiyama, Y.: Dynamical model of traffic congestion and numerical simulation. Phys. Rev. E 51, 1035 (1995)

    Google Scholar 

  5. Bioti, M., Leon, J.J.P., Manna, M., Pempinelli, F.: On the spectral transform of a Korteweg-de Vries equation in two spatial dimensions. Inverse Probl. 2, 271–279 (1986)

    MATH  Google Scholar 

  6. Date, E., Jimbo, M., Kashiwara, M., Miwa, T.: KP hierarchies of orthogonal and oymplectic type transformation groups for soliton equations VI. J. Phys. Soc. Japan. 50, 3813–3818 (1981)

    MATH  Google Scholar 

  7. Camassa, R., Holm, D.D.: An integrable shallow water equation with peaked solitons. Phys. Rev. Lett. 71, 1661 (1993)

    MATH  Google Scholar 

  8. Ablowitz, M., Clarkson, P.: Solitons. Cambridge University Press, Cambridge, Nonlinear Evolution Equation and Inverse Scattering (1999)

    MATH  Google Scholar 

  9. Agrawal, G.P.: Nonlinear Fiber Optic. Academic Press, San Diego (2006)

    Google Scholar 

  10. Abdullaev, F.K., Gammal, A., Tomio, L., Frederico, T.: Stability of trapped Bose-Einstein condensates. Phys. Rev. A 63, 043604 (2001)

    Google Scholar 

  11. Hasegawa, A.: Plasma Instabilities and Nonlinear Effects, Springer Science and Business Media, (2012)

  12. Luttinger, J.M., Kohn, W.: Motion of electrons and holes in perturbed periodic fields. Phys. Rev. 97, 869 (1955)

    MATH  Google Scholar 

  13. Beals, R., Sattinger, D.H., Szmigielski, J.: The string density problem and the Camassa-Holm equation. Phil. Trans. R. Soc. A 365, 2299–2312 (2007)

    MATH  Google Scholar 

  14. Munson, B. R., Okiishi, T. H., Huebsch, W. W., Rothmayer, A.P.: Fundamentals of Fluid Mechanics, Wiley, (2013)

  15. Vladimir, N.S., Hasegawa, A.: Novel soliton solutions of the nonlinear Schrödinger equation model. Phys. Rev. Lett. 85, 4502 (2000)

    Google Scholar 

  16. Gardner, C.S., Greene, J.M., Kruskal, M.D., Miura, R.M.: Method for solving the Korteweg-de Vries equation. Phys. Rev. Lett. 19, 1095 (1967)

    MATH  Google Scholar 

  17. Veerakumar, V., Daniel, M.: Modified Kadomtsev-Petviashvili (MKP) equation and electromagnetic soliton. Math. Comput. Simul. 62, 163–169 (2003)

    MATH  Google Scholar 

  18. Yin, H.M., Tian, B., Zhen, H.L., Chai, J., Liu, L., Sun, Y.: Solitons, bilinear Bäcklund transformations and conservation laws for a \((2+1)\)-dimensional Bogoyavlenskii-Kadomtsev-Petviashili equation in a fluid, plasma or ferromagnetic thin film. J. Mod. Opt. 64, 725–731 (2017)

    Google Scholar 

  19. Weiss, J., Tabor, M., Carnevale, G.: The Painlevè property for partial differential equations. J. Math. Phys. 24, 532 (1983)

    MATH  Google Scholar 

  20. Weiss, J.: The Painlevè property for partial differential equations. II: Bäcklund transformation, Lax pairs, and the Schwarzian derivative. J. Math. Phys. 24, 1405–1413 (1983)

    MATH  Google Scholar 

  21. Gibbon, J.D., Radmore, P., Tabor, M., Wood, D.: The Painlevè property and Hirota’s method. Stud. Appl. Math. 72, 39–63 (1985)

    MATH  Google Scholar 

  22. Bekir, A.: Painlevè test for some \((2+1)\)-dimensional nonlinear equations. Chaos, Solitons Fractals 32, 449–455 (2007)

    MATH  Google Scholar 

  23. Wazwaz, A.M.: Painlevè analysis for Boiti-Leon-Manna-Pempinelli equation of higher dimensions with time-dependent coefficients: multiple soliton solutions. Phys. Lett. A 384, 126310 (2020)

    MATH  Google Scholar 

  24. Liu, F.Y., Gao, Y.T., Yu, X., Ding, C.C., Deng, G.F., Jia, T.T.: Painlevè analysis, Lie group analysis and soliton-cnoidal, resonant, hyperbolic function and rational solutions for the modified Korteweg-de Vries-Calogero-Bogoyavlenskii-Schiff equation in fluid mechanics/plasma physics. Chaos Solitons Fractals 144, 110559 (2021)

    MATH  Google Scholar 

  25. Hirota, R.: Direct Method Soliton Theory. Cambridge University Press, Cambridge (2004)

    MATH  Google Scholar 

  26. Zhang, W.X., Liu, Y.: Integrability and multisoliton solutions of the reverse space and/or time nonlocal Fokas-Lenells equation. Nonlinear Dyn. 108, 2531–22549 (2022)

    Google Scholar 

  27. Sheng, H., Xiao, L., Yu, G., Zhong, Y.: Solitons and (semi-)rational solutions for the \((2+1)\)-dimensional Gardner equation. Appl. Math. Lett. 128, 107883 (2022)

    MATH  Google Scholar 

  28. Li, L., Xie, Y., Yan, Y., Wang, M.: A new extended \((2+1)\)-dimensional Kadomtsev-Petviashvili equation with N-solitons, periodic solutions, rogue waves, breathers and lump waves. Results Phys. 39, 105678 (2022)

    Google Scholar 

  29. Ismael, H., Murad, M., Bulut, H.: M-lump waves and their interaction with multi-soliton solutions for a generalized Kadomtsev-Petviashvili equation in \((3+1)\)-dimensions. Chinese J. Phys. 77, 1357–1364 (2022)

    Google Scholar 

  30. Gilson, C., Lambert, F., Nimmo, J., Willox, R.: On the Combinatorics of the Hirota D-Operators. Proc. R. Soc. Lond. A. 452, 223–234 (1996)

    MATH  Google Scholar 

  31. Lambert, F., Springael, J.: Construction of Bäcklund Transformations with Binary Bell Polynomials. J. Phys. Soc. Japan. 66, 2211–2213 (1997)

    MATH  Google Scholar 

  32. Lambert, F., Springael, J.: On a direct procedure for the disclosure of Lax Pairs and Bäcklund transformations. Chaos Solitons Fractals 12, 2821–2832 (2001)

    MATH  Google Scholar 

  33. Wang, C.: Lump solution and integrability for the associated Hirota bilinear equation. Nonlinear Dyn. 87, 2635–2642 (2017)

    Google Scholar 

  34. Xu, G.Q., Deng, S.F.: Painlevè analysis, integrability and exact solutions for a \((2+1)\)-dimensional generalized Nizhnik-Novikov-Veselov equation. Eur. Phys. J. Plus 131, 385 (2016)

    Google Scholar 

  35. Zhao, X.H., Tian, B., Xie, X.Y., Wu, X.Y., Sun, Y., Guo, Y.J.: Solitons, Bäcklund transformation and Lax pair for a \((2+1)\)-dimensional Davey-Stewartson system on surface waves of finite depth. Waves Random Complex Med 28, 356–366 (2018)

    MATH  Google Scholar 

  36. Fan, E.: The integrability of nonisospectral and variable-coefficient KdV equation with binary Bell polynomials. Phys. Lett. A 52, 493 (2011)

    MATH  Google Scholar 

  37. Fan, E., Hon, Y.C.: Super extension of Bell polynomials with applications to supersymmetric equations. J. Math. Phys. 53, 013503 (2012)

    MATH  Google Scholar 

  38. Xu, G.Q., Wazwaz, A.M.: Integrability aspects and localized wave solutions for a new \((4+1)\)-dimensional Boiti-Leon-Manna-Pempinelli equation. Nonlinear Dyn. 98, 1379–1390 (2019)

    Google Scholar 

  39. Wangan, Y., Chena, Y.: Bell polynomials approach for two higher-order KdV-type equations in fluids. Nonlinear Anal. 31, 533–551 (2016)

    Google Scholar 

  40. Xu, G.Q., Wazwaz, A.M.: Characteristics of integrability, bidirectional solitons and localized solutions for a \((3+1)\)-dimensional generalized breaking soliton equation. Nonlinear Dyn. 96, 1989–2000 (2019)

    MATH  Google Scholar 

  41. Bluman, G., Stephen, A.: Symmetry and integration methods for differential equations, Springer Science, Business Media, 154, (2008)

  42. Olver, P.J.: Applications of Lie groups to differential equations, Springer Science, Business Media, 107 (2000)

  43. Malik, S., Kumar, S., Biswas, A., Ekici, M., Dakova, A., Alzahrani, A.K., Belic, M.R.: Optical solitons and bifurcation analysis in fiber Bragg gratings with Lie symmetry and Kudryashov’s approach. Nonlinear Dyn. 105(1), 735–751 (2021)

    Google Scholar 

  44. Kumar, M., Tanwar, D.V.: On Lie symmetries and invariant solutions of \((2+1)\)-dimensional Gardner equation. Commun. Nonlinear Sci. Numer. Simul. 69, 45–57 (2019)

    MATH  Google Scholar 

  45. Kumar, S., Nisar, K.S., Kumar, A.: A \((2+1)\)-dimensional generalized Hirota-Satsuma-Ito equations: Lie symmetry analysis, invariant solutions and dynamics of soliton solutions. Results Phys. 28, 104621 (2021)

    Google Scholar 

  46. Rui, W., Zhao, P., Zhang, Y.: Invariant Solutions and Conservation Laws of the \((2+1)\)-Dimensional Boussinesq Equation. Abstr. Appl. Anal. 2014, 840405 (2014)

    MATH  Google Scholar 

  47. Hua, Y.F., Guo, B.L., Ma, W.X., Lü, X.: Interaction behavior associated with a generalized \((2+1)\)-dimensional Hirota bilinear equation for nonlinear waves. Appl. Math. Model. 74, 184–198 (2019)

    MATH  Google Scholar 

  48. Xing Lü, Y.F., Hua, S.J., Chen and X. F. Tang,: Integrability characteristics of a novel \((2+1)\)-dimensional nonlinear model: Painlevè analysis, soliton solutions, Bäcklund transformation, Lax pair and infinitely many conservation laws. Commun. Nonlinear Sci. Numer. Simul. 95, 105612 (2021)

  49. Zhao, Z., He, L.: M-lump, high-order breather solutions and interaction dynamics of a generalized \((2+1)\)-dimensional nonlinear wave equation. Nonlinear Dyn. 100, 2753–2765 (2020)

    Google Scholar 

  50. Jimboa, M., Kruskal, M.D., Miwaa, T.: Painlevè test for the self-dual Yang-Mills equation. Phys. Lett. A 92, 59–60 (1982)

    Google Scholar 

Download references

Acknowledgements

The authors Uttam Kumar Mandal and Sandeep Malik wishes to express their gratitude to the CSIR for providing financial support in the form of an SRF scholarship, as evidenced by letter number: 09/106(0198)/2019-EMR-I and 09/1051(0028)/2018-EMR-I, respectively. The author Sachin Kumar wants to acknowledge the financial support provided under the Scheme “Fund for Improvement of S & T Infrastructure (FIST)” of the Department of Science & Technology (DST), Government of India, as evidenced by letter number: SR/FST/MS-I/2021/104 to the Department of Mathematics and Statistics, Central University of Punjab.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sachin Kumar or Amiya Das.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mandal, U.K., Malik, S., Kumar, S. et al. A generalized (2+1)-dimensional Hirota bilinear equation: integrability, solitons and invariant solutions. Nonlinear Dyn 111, 4593–4611 (2023). https://doi.org/10.1007/s11071-022-08036-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-022-08036-8

Keywords

Navigation