Skip to main content
Log in

Solitons in magnetized plasma with electron inertia under weakly relativistic effect

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this relativistic consideration, the energy integral unlike others has been derived in a weakly relativistic plasma in terms of Sagdeev potential. Both compressive and rarefactive subsonic solitary waves are found to exist, depending on wave speeds in various directions of propagation. It is found that compressive relativistic solitons have potential depths that are higher than non-relativistic solitons in all directions of propagation, allowing for the presence of denser plasma particles in the potential well. Furthermore, it shows how compressive soliton amplitude grows as the propagation direction gets closer to the magnetic field’s direction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

Inquiries about data availability should be directed to the authors.

References

  1. Ostrovskii, L.A., Petrukhina, V.I., Fainshtein, S.M.: Amplification of ion-acoustic solitons by a beam of charged particles. Sov. Phys. JETP 42, 1041–1043 (1975)

    Google Scholar 

  2. Gell, Y., Roth, I.: The effects of an ion beam on the motion of solitons in an ion beam plasma system. Plasma Phys. 19, 915–924 (1977)

    Google Scholar 

  3. Abrol, P.S., Tagare, S.G.: Ion-acoustic solitary waves in an ion-beam-plasma system with nonisothermal electrons. Phys. Lett. A 75, 74–76 (1979)

    Google Scholar 

  4. Abrol, P.S., Tagare, S.G.: Ion-beam generated ion-acoustic solitons in beam plasma system with non-isothermal electrons. Plasma Phys. 22, 831–841 (1980)

    Google Scholar 

  5. Abrol, P.S., Tagare, S.G.: Ionic thermal effects on solitons in a plasma with ion beam. Plasma Phys. 23, 651–656 (1981)

    Google Scholar 

  6. Yajima, N., Kono, M., Ueda, S.: Soliton and nonlinear explosion modes in an ion-beam plasma system. J. Phys. Soc. Jpn. 52, 3414–3423 (1983)

    Google Scholar 

  7. Kalita, B.C., Kalita, M.K., Chutia, J.: Drifting effect of electrons on fully non-linear ion-acoustic waves in a magnetoplasma. J. Phys. A Math. Gen. 19, 3559–3563 (1986)

    MATH  Google Scholar 

  8. Zank, G.P., McKenzie, J.F.: Solitons in an ion-beam plasma. J. Plasma Phys. 39, 183–191 (1988)

    Google Scholar 

  9. Zank, G.P., McKenzie, J.F.: Properties of waves in an ion-beam plasma system. J. Plasma Phys. 39, 193–213 (1988)

    Google Scholar 

  10. Naidu, K., Zank, G.P., Mckenzie, J.F.: Wave properties of an ion-beam system with a strong magnetic field. J. Plasma Phys. 43, 385–396 (1990)

    Google Scholar 

  11. Kuehl, H.H., Zhang, C.Y.: Effects of ion drift on small-amplitude ion-acoustic solitons. Phys. Fluids B 3, 26–28 (1991)

    Google Scholar 

  12. Kalita, B.C., Kalita, M.K., Bhatta, R.P.: Solitons in a magnetized ion-beam plasma system. J. Plasma Phys. 50, 349–357 (1993)

    Google Scholar 

  13. Nakamura, Y., Ohtani, K.: Solitary waves in an ion-beam-plasma system. J. Plasma Phys. 53, 235–244 (1995)

    Google Scholar 

  14. Nakamura, Y., Komatsuda, K.: Observation of solitary waves in an ion-beam–plasma system. J. Plasma Phys. 60, 69–80 (1998)

    Google Scholar 

  15. Nakamura, Y.: Solitary waves in a positive ion-beam-quasi-neutral three-component plasma system. Plasma Phys. Contr. Fusion 41, A469–A476 (1999)

    Google Scholar 

  16. Hasegawa, H., Ishiguro, S., Okamoto, M.: Particle acceleration by a large-amplitude wave associated with an ion beam in a magnetized plasma. J. Plasma Phys. 72, 941–944 (2006)

    Google Scholar 

  17. Sen, B., Chatterjee, P.: Speed and shape of large-amplitude solitary waves in ion-beam plasma system. Czechoslovak J. Phys. 56, 1429–1436 (2006)

    Google Scholar 

  18. Islam, S., Bandyopadhyay, A., Das, K.P.: Ion-acoustic solitary waves in a multi-species magnetized plasma consisting of non-thermal and isothermal electrons. J. Plasma Phys. 74, 765–806 (2008)

    Google Scholar 

  19. Kalita, B.C., Barman, S.N.: Effect of ion and ion-beam mass ratio on the formation of ion-acoustic solitons in magnetized plasma in the presence of electron inertia. Phys. Plasmas 16, 052101 (2009)

    Google Scholar 

  20. Das, B., Ghosh, D.K., Chatterjee, P.: Large-amplitude double layers in a dusty plasma with an arbitrary streaming ion beam. Pramana J. Phys. 74, 973–981 (2010)

    Google Scholar 

  21. Kalita, B.C., Das, R., Sarmah, H.K.: Weakly relativistic effect in the formation of ion-acoustic solitary waves in a positive ion-beam plasma. Can. J. Phys. 88, 157–164 (2010)

    Google Scholar 

  22. Kalita, B.C., Das, R., Sarmah, H.K.: Weakly relativistic solitons in a magnetized ion-beam plasma in presence of electron inertia. Phys. Plasmas 18, 012304 (2011)

    Google Scholar 

  23. Das, R.: Effect of ion temperature on small-amplitude ion-acoustic solitons in a magnetized ion-beam plasma in presence of electron inertia. Astrophys. Space Sci. 341, 543–549 (2012)

    Google Scholar 

  24. Okutsu, E., Nakamura, M., Nakamura, Y.: Amplification of ion-acoustic solitons by an ion beam. Plasma Phys. 20, 561–568 (1978)

    Google Scholar 

  25. Lee, S.G., Diebold, D.A., Hershkowitz, N.: Wide solitons in an ion-beam-plasma system. Phys. Rev. Lett. 77, 1290–1293 (1996)

    Google Scholar 

  26. Korteweg, D.J., De-Vries, G.: On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves. Philos. Mag. 39, 422–443 (1895)

    MATH  Google Scholar 

  27. Washimi, H., Taniuti, T.: Propagation of ion-acoustic solitary waves of small amplitude. Phys. Rev. Lett. 17, 966 (1966)

    Google Scholar 

  28. Shukla, P.K., Yu, M.Y.: Exact solitary ion-acoustic waves in a magnetoplasma. J. Math. Phys. 19, 2306 (1978)

    Google Scholar 

  29. Yu, M.Y., Shukla, P.K., Bujarbarua, S.: Fully nonlinear ion-acoustic solitary waves in a magnetized plasma. Phys. Fluids 23, 2146–2147 (1980)

    Google Scholar 

  30. Yinhua, C., Yu, M.Y.: Exact ion-acoustic solitary waves in an impurity containing magnetized plasma. Phys. Plasmas 1, 1868–1870 (1994)

    Google Scholar 

  31. Chatterjee, P., Saha, T., Muniandy, S.V.: Solitary waves and double layers in dense magnetoplasma. Phys. Plasmas 16, 072110 (2009)

    Google Scholar 

  32. Chain, C.L., Clemmow, P.C.: Nonlinear, periodic waves in a cold plasma: a quantitative analysis. J. Plasma Phys. 14, 505–527 (1975)

    Google Scholar 

  33. Shukla, P.K., Yu, M.Y., Trintsadze, N.L.: Intense solitary laser pulse propagation in a plasma. Phys Fluids 27, 327–328 (1984)

    MATH  Google Scholar 

  34. Arons, J.: Some problems of pulsar physics. Space Sci. Rev. 24, 437–510 (1979)

    Google Scholar 

  35. Das, G.C., Paul, S.N.: Ion-acoustic solitary waves in relativistic plasmas. Phys. Fluids 28, 823–825 (1985)

    MATH  Google Scholar 

  36. Chatterjee, P., Roychoudhury, R.: Effect of ion temperature on large-amplitude ion-acoustic solitary waves in relativistic plasma. Phys. Plasmas 1, 2148–2153 (1994)

    Google Scholar 

  37. Roychoudhury, R., Venkatesan, S.K., Das, C.: Effects of ion and electron drifts on large amplitude solitary waves in a relativistic plasma. Phys. Plasmas 4, 4232–4235 (1997)

    Google Scholar 

  38. Esfandyari, A.R., Khorram, S., Rostami, A.: Ion-acoustic solitons in a plasma with a relativistic electron beam. Phys. Plasmas 8, 4753–4761 (2001)

    Google Scholar 

  39. Singh, K., Kumar, V., Malik, H.K.: Electron inertia effect on small amplitude solitons in a weakly relativistic two-fluid plasma. Phys. Plasmas 12, 052103 (2005)

    Google Scholar 

  40. Das, B., Chatterjee, P.: Speed and shape of solitary waves in relativistic warm plasma. Czech. J. Phys. 56, 389–397 (2006)

    MATH  Google Scholar 

  41. Kalita, B.C., Das, R.: Small amplitude solitons in a warm plasma with smaller and higher order relativistic effects. Phys. Plasmas 14, 072108 (2007)

    Google Scholar 

  42. El-Labany, S.K., Sabry, R., El-Taibany, W.F.: Propagation of three-dimensional ion-acoustic solitary waves in magnetized negative ion plasmas with nonthermal electrons. Phys. Plasmas 17, 042301 (2010)

    Google Scholar 

  43. Qu, Q.X., Tian, B., Liu, W.J., Li, M., Sun, K.: Painlevé integrability and N-soliton solution for the variable-coefficient Zakharov-Kuznetsov equation from plasmas. Nonlinear Dyn. 62, 229–235 (2010)

    MATH  Google Scholar 

  44. Kalita, B.C., Deka, M.: Investigation of ion-acoustic solitons (IAS) in a weakly relativistic magnetized plasma. Astrophys. Space Sci. 347, 109–117 (2013)

    MATH  Google Scholar 

  45. Rehman, H., Mahmood, S., Rehman, A.: Compressive and rarefactive ion-acoustic solitons in a magnetized two-ion component plasma. Phys Scr. 89, 105605 (2014)

    Google Scholar 

  46. Wang, L., Gao, Y.T., Sun, Z.Y., Qi, F.H., Meng, D.X., Lin, G.D.: Solitonic interactions, Darboux transformation and double Wronskian solutions for a variable-coefficient derivative nonlinear Schrödinger equation in the inhomogeneous plasmas. Nonlinear Dyn. 67, 713–722 (2012)

    MATH  Google Scholar 

  47. Sultana, S.: Ion-acoustic solitons in magnetized collisional non-thermal dusty plasmas. Phys. Lett. A 382, 1368–1373 (2018)

    MATH  Google Scholar 

  48. Kamalam, T., Ghosh, S.S.: Ion-acoustic super solitary waves in a magnetized plasma. Phys. Plasmas 25, 122302 (2018)

    Google Scholar 

  49. El-Monier, S.Y., Atteya, A.: Obliquely propagating nonlinear ion-acoustic solitary and cnoidal waves in nonrelativistic magnetized pair-ion plasma with superthermal electrons. AIP Adv. 9, 045306 (2019)

    Google Scholar 

  50. Ullah, G., Saleem, M., Khan, M.: Ion-acoustic solitary waves in magnetized electron-positron-ion plasmas with Tsallis distributed electrons. Cont. Plasma Phys. 60, e202000068 (2020)

    Google Scholar 

  51. Lan, Z.Z., Guo, B.L.: Nonlinear waves behaviors for a coupled generalized nonlinear Schro¨dinger–Boussinesq system in a homogeneous magnetized plasma. Nonlinear Dyn. 100, 3771–3784 (2020)

    Google Scholar 

  52. Hassan, M.R., Sultana, S.: Damped dust-ion-acoustic solitons in collisional magnetized nonthermal plasmas. Contr. Plasma Phys. 61, 65 (2021)

    Google Scholar 

  53. Nooralishahi, F., Salem, M.K.: Relativistic magnetized electron-positron quantum plasma and large-amplitude solitary electromagnetic waves. Braz. J. Phys. 51, 1689–1697 (2021)

    Google Scholar 

  54. Li, Q., Li, M., Gong, Z., Tian, Y., Zhang, R.: Locating and protecting interdependent facilities to hedge against multiple non-cooperative limited choice attackers. Reliab. Eng. Syst. Saf. 223, 108440 (2022)

    Google Scholar 

  55. Wazwaz, A.M., Albalawi, W., El-Tantawy, S.A.: Optical envelope soliton solutions for coupled nonlinear Schrodinger equations applicable to high birefringence fibers. Optik 255, 168673 (2022)

    Google Scholar 

  56. Zhang, R.F., Li, M.C.: Bilinear residual network method for solving the exactly explicit solutions of nonlinear evolution equations. Nonlinear Dyn. 108, 521–531 (2022)

    Google Scholar 

  57. Zhang, R.F., Li, M.C., Gan, J.Y., Li, Q., Lan, Z.Z.: Novel trial functions and rogue waves of generalized breaking soliton equation via bilinear neural network method. Chaos Solitons Fractals 154, 111692 (2022)

    MATH  Google Scholar 

  58. Zhang, R.F., Bilige, S.: Bilinear neural network method to obtain the exact analytical solutions of nonlinear partial differential equations and its application to p-gBKP equation. Nonlinear Dyn. 95, 3041–3048 (2019)

    MATH  Google Scholar 

  59. Zhang, R.F., Li, M.C., Albishari, M., Zheng, F.C., Lan, Z.Z.: Generalized lump solutions, classical lump solutions and rogue waves of the (2+1)-dimentional Caudrey–Dodd–Gibbon–Kotera–Sawada-like equation. Appl. Math. Comput. 403, 126201 (2021)

    MATH  Google Scholar 

  60. Kumar, S., Dhiman, S.K., Baleanu, D., Osman, M.S., Wazwaz, A.M.: Lie symmetries, closed-form solitons, and various dynamical profiles of solitons for the variable coefficient (2+1)-dimensional KP equations. Symmetry 14, 597 (2022)

    Google Scholar 

  61. Zhang, R.F., Bilige, S., Liu, J.G., Li, M.: Bright-dark solitons and interaction phenomenon for p-gBKP equation by using bilinear neural network method. Phys. Scr. 96, 025224 (2021)

    Google Scholar 

  62. Wazwaz, A.M.: New (3+1)-dimensional Painleve integrable fifth-order equation with third-order temporal dispersion. Nonlinear Dyn. 106, 891–897 (2021)

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to the anonymous referees for the suggestions made for the improvement of the paper from its earlier form.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to K. Hosseini or D. Baleanu.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalita, J., Das, R., Hosseini, K. et al. Solitons in magnetized plasma with electron inertia under weakly relativistic effect. Nonlinear Dyn 111, 3701–3711 (2023). https://doi.org/10.1007/s11071-022-08015-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-022-08015-z

Keywords

Navigation