Skip to main content

Advertisement

Log in

Composite observer-based robust model predictive control technique for ducted fan aerial vehicles

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The ducted fan aircraft are an important type of hybrid aerial vehicle due to their annular safety mechanism called duct. Despite their numerous advantages, developing a control system for these tail-sitter configurations is a difficult task in the presence of disturbances and model inaccuracies. This paper presents a composite control strategy for these aerial robots subject to disturbances and model uncertainties that aims to construct a flight control algorithm with effective control functionality. Initially, a ducted fan aerial vehicle with adequate dynamic capabilities is utilized. A disturbance observer is employed to estimate the time-varying external disturbances and uncertainties. Moreover, two observers (extended and unscented Kalman filters) are used separately for state estimation to counter the unwanted noise. An online-based model predictive control framework is presented, where at each step, the nominal system’s state is updated by the real state. After the optimization problem is computed, the final composite control signal incorporates the optimal control action and observer estimates, thereby reducing the computational cost. Stability and feasibility are thoroughly analyzed. Comparative analysis based on simulation is carried out to reveal the efficacy of the proposed scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

Enquiries about data availability should be directed to the authors.

References

  1. Cheng, Z., Pei, H.: Flight transition control for ducted fan UAV with saturation on control surfaces. In: 2021 International Conference on Unmanned Aircraft Systems (ICUAS), pp. 439–446 (2021). https://doi.org/10.1109/ICUAS51884.2021.9476758

  2. Ko, A., Ohanian, O.J., Gelhausen, P.: Ducted fan UAV modeling and simulation in preliminary design. In: AIAA Modeling and Simulation Technologies Conference and Exhibit (2007). https://doi.org/10.2514/6.2007-6375

  3. Naldi, R., Macchelli, A., Mimmo, N., Marconi, L.: Robust control of an aerial manipulator interacting with the environment. IFAC-PapersOnLine 51(13), 537–542 (2018). https://doi.org/10.1016/j.ifacol.2018.07.335

    Article  Google Scholar 

  4. Manzoor, T., Xia, Y., Ali, Y., Hussain, K.: Flight control techniques and classification of ducted fan aerial vehicles. Control Theory Appl. 39(2), 201–221 (2022). https://doi.org/10.7641/CTA.2021.00779

    Article  Google Scholar 

  5. Marconi, L., Naldi, R.: Control of aerial robots: hybrid force and position feedback for a ducted fan. IEEE Control Syst. Mag. 32(4), 43–65 (2012). https://doi.org/10.1109/MCS.2012.2194841

    Article  MATH  Google Scholar 

  6. Naldi, R., Torre, A., Marconi, L.: Robust control of a miniature ducted-fan aerial robot for blind navigation in unknown populated environments. IEEE Trans. Control Syst. Technol. 23(1), 64–79 (2015). https://doi.org/10.1109/TCST.2014.2312929

    Article  Google Scholar 

  7. Marconi, L., Naldi, R., Gentili, L.: Modelling and control of a flying robot interacting with the environment. Automatica 47(12), 2571–2583 (2011). https://doi.org/10.1016/j.automatica.2011.09.020

    Article  MATH  Google Scholar 

  8. Ducard, G.J., Allenspach, M.: Review of designs and flight control techniques of hybrid and convertible VTOL UAVs. Aerosp. Sci. Technol. 118, 107035 (2021). https://doi.org/10.1016/j.ast.2021.107035

    Article  Google Scholar 

  9. Cheng, Z., Pei, H.: Transition analysis and practical flight control for ducted fan fixed-wing aerial robot: level path flight mode transition. IEEE Robot. Autom. Lett. 7(2), 3106–3113 (2022). https://doi.org/10.1109/LRA.2022.3145087

    Article  Google Scholar 

  10. Chen, F., Pei, H., Cheng, Z.: Study on high-speed-to-hovering back-transition control of ducted fan UAV. In: 2021 33rd Chinese Control and Decision Conference (CCDC), pp. 5091–5097 (2021). https://doi.org/10.1109/CCDC52312.2021.9601683

  11. Roberts, A., Tayebi, A.: Adaptive position tracking of VTOL UAV. IEEE Trans. Robot. 27, 129–142 (2011). https://doi.org/10.1109/TRO.2010.2092870

    Article  Google Scholar 

  12. Hua, M., Hamel, T., Morin, P., Samson, C.: Introduction to feedback control of underactuated VTOL vehicles: a review of basic control design ideas and principles. IEEE Control Syst. Mag. 33(1), 61–75 (2013). https://doi.org/10.1109/MCS.2012.2225931

    Article  MATH  Google Scholar 

  13. Manzoor, T., Xia, Y., Zhai, D.H., Ma, D.: Trajectory tracking control of a VTOL unmanned aerial vehicle using offset-free tracking MPC. Chin. J. Aeronaut. 33(7), 2024–2042 (2020). https://doi.org/10.1016/j.cja.2020.03.003

    Article  Google Scholar 

  14. Xia, Y., Fu, M.: Compound Control Methodology for Flight Vehicles, vol. 438. Springer, Berlin (2013). https://doi.org/10.1007/978-3-642-36841-7

    Book  MATH  Google Scholar 

  15. Tran, M.T., Lee, D.H., Chakir, S., Kim, Y.B.: A novel adaptive super-twisting sliding mode control scheme with time-delay estimation for a single ducted-fan unmanned aerial vehicle. Actuators (2021). https://doi.org/10.3390/act10030054

  16. Cheng, Z., Pei, H.: Hover-to-cruise transition control for high-speed level flight of ducted fan UAV. In: 2020 International Conference on Unmanned Aircraft Systems (ICUAS), pp. 1329–1337 (2020). https://doi.org/10.1109/ICUAS48674.2020.9214014

  17. Shan, S., Hou, Z., Wang, S.: Controller design and experiment of the ducted-fan flying robot. In: 2016 IEEE International Conference on Robotics and Biomimetics (ROBIO), pp. 1852–1857 (2016). https://doi.org/10.1109/ROBIO.2016.7866598

  18. Zhao, H., Sheng, S.Z., Li, J.B., Sun, C.W.: Modelling and attitude control of a miniature ducted fan UAV. Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. 5, 953–964 (2016). https://doi.org/10.1177/0954410015602029

    Article  Google Scholar 

  19. Ren, X.L., Wang, C.H., Yi, G.X.: Robust D-stability controller design for a ducted fan unmanned aerial vehicle. Math. Probl. Eng. 2014, 1–10 (2014). https://doi.org/10.1155/2014/746379

    Article  MATH  Google Scholar 

  20. Duan, H., Sun, C.: Pendulum-like oscillation controller for micro aerial vehicle with ducted fan based on LQR and PSO. Sci. China Technol. Sci. 56, 423–429 (2013). https://doi.org/10.1007/s11431-012-5065-5

    Article  Google Scholar 

  21. Sheng, S., Sun, C.: A near-hover adaptive attitude control strategy of a ducted fan micro aerial vehicle with actuator dynamics. Appl. Sci. 5, 666–681 (2015). https://doi.org/10.3390/app5040666

    Article  Google Scholar 

  22. Shin, J., Ji, S., Shon, W., Lee, H., Cho, K., Park, S.: Indoor hovering control of small Ducted-fan type OAV using ultrasonic positioning system. J. Intell. Robot. Syst. 61(1), 15–27 (2011). https://doi.org/10.1007/s10846-010-9488-6

    Article  Google Scholar 

  23. Pflimlin, J.M., Soueres, P., Hamel, T.: Position control of a ducted fan VTOL UAV in crosswind. Int. J. Control 80, 666–683 (2007). https://doi.org/10.1080/00207170601045034

    Article  MATH  Google Scholar 

  24. Johnson, E.N., Turbe, M.A.: Modeling, control, and flight testing of a small-ducted fan aircraft. J. Guid. Control. Dyn. 29, 769–779 (2006). https://doi.org/10.2514/1.16380

    Article  Google Scholar 

  25. Hess, R., Bakhtiari-Nejad, M.: Sliding mode control of a nonlinear, ducted-fan UAV model. In: 2006 AIAA Guidance, Navigation, and Control Conference and Exhibit (2006). https://doi.org/10.2514/6.2006-6088

  26. Rawlings, J.B., Mayne, D.Q., Diehl, M.M.: Model Predictive Control: Theory, Computation, and Design, 2nd edn. Nob Hill Publishing, LLC (2017)

  27. Emami, A., Rezaeizadeh, A.: Adaptive model predictive control-based attitude and trajectory tracking of a VTOL aircraft. IET Control Theory Appl. 12, 2031–2042 (2018). https://doi.org/10.1049/iet-cta.2017.1048

    Article  Google Scholar 

  28. Xie, H., Dai, L., Lu, Y., Xia, Y.: Disturbance rejection MPC framework for input-affine nonlinear systems. IEEE Trans. Autom. Control (2021). https://doi.org/10.1109/TAC.2021.3133376

  29. Manzoor, T., Sun, Z., Xia, Y., Ma, D.: MPC based compound flight control strategy for a ducted fan aircraft. Aerosp. Sci. Technol. 107, 106264 (2020). https://doi.org/10.1016/j.ast.2020.106264

    Article  Google Scholar 

  30. Zhang, K., Xu, F., Xu, X.: Observer-based fast nonlinear MPC for multi-DOF maglev positioning system: theory and experiment. Control. Eng. Pract. 114, 104860 (2021). https://doi.org/10.1016/j.conengprac.2021.104860

    Article  Google Scholar 

  31. Oliveira, E.L., Orsino, R.M., Donha, D.C.: Disturbance-observer-based model predictive control of underwater vehicle manipulator systems. In: IFAC-PapersOnLine, vol. 54, pp. 348–355 (2021). https://doi.org/10.1016/j.ifacol.2021.10.115

  32. Meng, Z., Wang, B., Huang, P.: MPC-based anti-sway control of tethered space robots. Acta Astronaut. 152, 146–162 (2018). https://doi.org/10.1016/j.actaastro.2018.07.050

    Article  Google Scholar 

  33. Dutta, L., Kumar Das, D.: Nonlinear disturbance observer-based adaptive feedback linearized model predictive controller design for a class of nonlinear systems. Asian J. Control (2022). https://doi.org/10.1002/asjc.2684

  34. Naldi, R., Gentili, L., Marconi, L., Sala, A.: Design and experimental validation of a nonlinear control law for a ducted-fan miniature aerial vehicle. Control. Eng. Pract. 18(7), 747–760 (2010). https://doi.org/10.1016/j.conengprac.2010.02.007

    Article  Google Scholar 

  35. Chen, H., Allgöwer, F.: A quasi-infinite horizon nonlinear model predictive control scheme with guaranteed stability. Automatica 34(10), 1205–1217 (1998). https://doi.org/10.1016/S0005-1098(98)00073-9

    Article  MATH  Google Scholar 

  36. Althoff, M., Stursberg, O., Buss, M.: Reachability analysis of nonlinear systems with uncertain parameters using conservative linearization. In: 47th IEEE Conference on Decision and Control, pp. 4042–4048 (2008). https://doi.org/10.1109/CDC.2008.4738704

  37. Sun, Z., Xia, Y.: Receding horizon tracking control of unicycle-type robots based on virtual structure. Int. J. Robust Nonlinear Control 26(17), 3900–3918 (2016). https://doi.org/10.1002/rnc.3555

    Article  MATH  Google Scholar 

  38. Liu, C., Chen, W.H.: Disturbance rejection flight control for small fixed-wing unmanned aerial vehicles. J. Guid. Control. Dyn. 39(12), 2810–2819 (2016). https://doi.org/10.2514/1.G001958

    Article  Google Scholar 

  39. Sontag, E.D.: Input to State Stability: Basic Concepts and Results, pp. 163–220. Springer, Berlin (2008). https://doi.org/10.1007/978-3-540-77653-6_3

    Book  MATH  Google Scholar 

  40. Naldi, R., Marconi, L., Gentili, L.: Robust takeoff and landing for a class of aerial robots. In: Proceedings of the 48h IEEE Conference on Decision and Control (CDC) and 28th Chinese Control Conference, pp. 3436–3441 (2009). https://doi.org/10.1109/CDC.2009.5400299

  41. Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi–a software framework for nonlinear optimization and optimal control. Math. Program. Comput. 11(1), 1–36 (2019). https://doi.org/10.1007/s12532-018-0139-4

    Article  MATH  Google Scholar 

  42. Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Math. Program. 106, 25–57 (2006). https://doi.org/10.1007/s10107-004-0559-y

    Article  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the Scientific Instruments Development Program of NSFC under Grant 615278010, in part by the Fundamental Research Funds for the Central Universities, in part by the Science and Technology Planning Project of Guangdong, China under Grant 2017B010116005, in part by the 2022 Foreign Expert Program (Foreign Youth Talent Program) of Ministry of Science and Technology of China under Project QN2022163002, and in part by China Postdoctoral Science Foundation (No. 284674).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hailong Pei.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manzoor, T., Pei, H. & Cheng, Z. Composite observer-based robust model predictive control technique for ducted fan aerial vehicles. Nonlinear Dyn 111, 3433–3450 (2023). https://doi.org/10.1007/s11071-022-08011-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-022-08011-3

Keywords

Navigation