Skip to main content
Log in

Adaptive control for the nonlinear event-triggered networked control system: a decoupling method

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, the adaptive control for a kind of nonlinear system over the event-driven sensors-controller communication network is addressed. Over this network, the existing strategy has been developed. However, the event-triggered mechanism and adaptive estimators are coupled together, which results in extra information delivery of the adaptive estimators over the network or extra computation equipment on the sensor side. To overcome this limitations, two kinds of adaptive control strategies are proposed in this paper. At first, the control strategy with the new event-triggered adaptive estimator is developed for the system without external disturbances where the event-triggered mechanism does not need the information of the adaptive estimators. It is proved that the closed-loop system is asymptotically stable and the Zeno behaviour is excluded. Furthermore, for the system with external disturbances, a robust control scheme with modified adaptive estimator and event-triggered mechanism is proposed and the practical stability of the closed-loop system is guaranteed. Also, the Zeno behaviour is excluded carefully. Comparing with the existing results, due to the decoupling structure of event-triggered mechanism and adaptive estimators, it is unnecessary to transfer the estimators’ information to the event-triggered mechanism on the sensor side, which saves the communication cost. What’s more, although the system state is sampled and event driven, the asymptotical stability is still guaranteed. Also, the developed strategy can handle with the external disturbances. Finally, two examples are performed to illustrate the effectiveness of the schemes and some comparisons are displayed to explain the advantages of the methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Availability of data and materials

The datasets generated during and/or analysed during the current study are generated via simulation code which is available in [Adaptive-NCS] repository, [https://github.com/ChaoMpc/Adaptive-NCS].

References

  1. Tabuada, P.: Event-triggered real-time scheduling of stabilizing control tasks. IEEE Trans. Autom. Control 52(9), 1680–1685 (2007). https://doi.org/10.1109/TAC.2007.904277

    Article  MATH  Google Scholar 

  2. Mazo, M., Tabuada, P.: Decentralized event-triggered control over wireless sensor/actuator networks. IEEE Trans. Autom. Control 56(10), 2456–2461 (2011). https://doi.org/10.1109/TAC.2011.2164036

    Article  MATH  Google Scholar 

  3. Dimarogonas, D.V., Frazzoli, E., Johansson, K.H.: Distributed event-triggered control for multi-agent systems. IEEE Trans. Autom. Control 57(5), 1291–1297 (2012). https://doi.org/10.1109/TAC.2011.2174666

    Article  MATH  Google Scholar 

  4. Mao, J., Guo, J., Xiang, Z.: Sampled-data control of a class of uncertain switched nonlinear systems in nonstrict-feedback form. Int. J. Robust Nonlinear Control 28(3), 918–939 (2018). https://doi.org/10.1002/rnc.3907

    Article  MATH  Google Scholar 

  5. Zhang, W., Wang, Z., Liu, Y., Ding, D., Alsaadi, F.E.: Sampled-data consensus of nonlinear multiagent systems subject to cyber attacks. Int. J. Robust Nonlinear Control 28(1), 53–67 (2018). https://doi.org/10.1002/rnc.3855

    Article  MATH  Google Scholar 

  6. Kishida, M., Kögel, M., Findeisen, R.: Combined event-and self-triggered control approach with guaranteed finite-gain \(l_2\) stability for uncertain linear systems. IET Control Theor. Appl. 11(11), 1674–1683 (2017). https://doi.org/10.1049/iet-cta.2016.1263

    Article  Google Scholar 

  7. Heemels, W.P.M.H., Donkers, M.C.F., Teel, A.R.: Periodic event-triggered control for linear systems. IEEE Trans. Autom. Control 58(4), 847–861 (2013). https://doi.org/10.1109/TAC.2012.2220443

    Article  MATH  Google Scholar 

  8. Heemels, W., Donkers, M.: Model-based periodic event-triggered control for linear systems. Automatica 49(3), 698–711 (2013). https://doi.org/10.1016/j.automatica.2012.11.025

  9. Wang, W., Postoyan, R., Nešić, D., Heemels, W.P.M.H.: Periodic event-triggered control for nonlinear networked control systems. IEEE Trans. Autom. Control 65(2), 620–635 (2020). https://doi.org/10.1109/TAC.2019.2914255

  10. Luo, B., Huang, T., Liu, D.: Periodic event-triggered suboptimal control with sampling period and performance analysis. IEEE Trans. Cybern. 51(3), 1253–1261 (2021). https://doi.org/10.1109/TCYB.2019.2909704

    Article  Google Scholar 

  11. Jiang, B., Lu, J., Liu, Y., Cao, J.: Periodic event-triggered adaptive control for attitude stabilization under input saturation. IEEE Trans. Circuits Syst. I Regul. Pap. 67(1), 249–258 (2020). https://doi.org/10.1109/TCSI.2019.2939375

    Article  MATH  Google Scholar 

  12. Ma, G., Liu, X., Pagilla, P.R., Ge, S.S.: Periodic event-triggered dynamic output feedback dissipative control with stochastic detection. IEEE Trans. Circuits Syst. II Express Br. 67(6), 1069–1073 (2020). https://doi.org/10.1109/TCSII.2019.2926449

    Article  Google Scholar 

  13. Luo, S., Deng, F., Chen, W.-H.: Dynamic event-triggered control for linear stochastic systems with sporadic measurements and communication delays. Automatica 107, 86–94 (2019). https://doi.org/10.1016/j.automatica.2019.05.028

    Article  MATH  Google Scholar 

  14. Liu, K.-Z., Teel, A.R., Sun, X.-M., Wang, X.-F.: Model-based dynamic event-triggered control for systems with uncertainty: a hybrid system approach. IEEE Trans. Autom. Control 66(1), 444–451 (2021). https://doi.org/10.1109/TAC.2020.2979788

    Article  MATH  Google Scholar 

  15. Qian, Y.-Y., Liu, L., Feng, G.: Distributed dynamic event-triggered control for cooperative output regulation of linear multiagent systems. IEEE Trans. Cybern. 50(7), 3023–3032 (2020). https://doi.org/10.1109/TCYB.2019.2905931

    Article  Google Scholar 

  16. Sun, J., Yang, J., Li, S., Zheng, W.X.: Estimate-based dynamic event-triggered output feedback control of networked nonlinear uncertain systems. IEEE Trans. Syst. Man Cybern. Syst. 51(5), 3148–3158 (2021). https://doi.org/10.1109/TSMC.2019.2918547

    Article  Google Scholar 

  17. Li, Z.-M., Chang, X.-H., Park, J.H.: Quantized static output feedback fuzzy tracking control for discrete-time nonlinear networked systems with asynchronous event-triggered constraints. IEEE Trans. Syst. Man Cybern. Syst. 51(6), 3820–3831 (2021). https://doi.org/10.1109/TSMC.2019.2931530

    Article  Google Scholar 

  18. Liu, S., Niu, B., Zong, G., Zhao, X., Xu, N.: Data-driven-based event-triggered optimal control of unknown nonlinear systems with input constraints. Nonlinear Dyn. 109, 891–909 (2022). https://doi.org/10.1007/s11071-022-07459-7

    Article  Google Scholar 

  19. Wu, C., Zhao, X., Xia, W., Liu, J., Basar, T.: \(l_2\)-gain analysis for dynamic event-triggered networked control systems with packet losses and quantization. Automatica 129, 109587 (2021). https://doi.org/10.1016/j.automatica.2021.109587

    Article  MATH  Google Scholar 

  20. Xie, X., Zhou, Q., Yue, D., Li, H.: Relaxed control design of discrete-time Takagi-Sugeno fuzzy systems: an event-triggered real-time scheduling approach. IEEE Trans. Syst. Man Cybern. Syst. 48(12), 2251–2262 (2018). https://doi.org/10.1109/TSMC.2017.2737542

    Article  Google Scholar 

  21. Hu, S., Yue, D., Yin, X., Xie, X., Ma, Y.: Adaptive event-triggered control for nonlinear discrete-time systems. Int. J. Robust Nonlinear Control 26(18), 4104–4125 (2016). https://doi.org/10.1002/rnc.3550

    Article  MATH  Google Scholar 

  22. Zhang, H., Yue, D., Yin, X., Chen, J.: Adaptive model-based event-triggered control of networked control system with external disturbance. IET Control Theor. Appl. 10(15), 1956–1962 (2016). https://doi.org/10.1049/iet-cta.2015.1289

    Article  Google Scholar 

  23. Gu, Z., Shi, P., Yue, D., Ding, Z.: Decentralized adaptive event-triggered \(h_{\infty }\) filtering for a class of networked nonlinear interconnected systems. IEEE Trans. Cybern. 49(5), 1570–1579 (2018). https://doi.org/10.1109/TCYB.2018.2802044

    Article  Google Scholar 

  24. Gu, Z., Yue, D., Tian, E.: On designing of an adaptive event-triggered communication scheme for nonlinear networked interconnected control systems. Inf. Sci. 422, 257–270 (2018). https://doi.org/10.1016/j.ins.2017.09.005

    Article  Google Scholar 

  25. Al Issa, S., Chakravarty, A., Kar, I.: Improved event-triggered adaptive control of non-linear uncertain networked systems. IET Control Theor. Appl 13(13), 2146–2152 (2019). https://doi.org/10.1049/iet-cta.2018.6002

    Article  Google Scholar 

  26. Xing, L., Wen, C., Liu, Z., Su, H., Cai, J.: Event-triggered adaptive control for a class of uncertain nonlinear systems. IEEE Trans. Autom. Control 62(4), 2071–2076 (2017). https://doi.org/10.1109/TAC.2016.2594204

    Article  MATH  Google Scholar 

  27. Choi, Y.H., Yoo, S.J.: Event-triggered decentralized adaptive fault-tolerant control of uncertain interconnected nonlinear systems with actuator failures. ISA Trans. 77, 77–89 (2018). https://doi.org/10.1016/j.isatra.2018.04.011

    Article  Google Scholar 

  28. Wang, J., Liu, Z., Chen, C.P., Zhang, Y.: Event-triggered fuzzy adaptive compensation control for uncertain stochastic nonlinear systems with given transient specification and actuator failures. Fuzzy Sets Syst. 365, 1–21 (2019). https://doi.org/10.1016/j.fss.2018.04.013

    Article  MATH  Google Scholar 

  29. Wang, J., Liu, Z., Zhang, Y., Chen, C.L.P.: Neural adaptive event-triggered control for nonlinear uncertain stochastic systems with unknown hysteresis. IEEE Trans. Neural Netw. Learn. Syst. 30(11), 3300–3312 (2019). https://doi.org/10.1109/TNNLS.2018.2890699

    Article  Google Scholar 

  30. Su, X., Liu, Z., Lai, G.: Event-triggered robust adaptive control for uncertain nonlinear systems preceded by actuator dead-zone. Nonlinear Dyn. 93(2), 219–231 (2018). https://doi.org/10.1007/s11071-017-3984-1

    Article  MATH  Google Scholar 

  31. Zhang, Z., Wen, C., Xing, L., Song, Y.: Adaptive event-triggered control of uncertain nonlinear systems using intermittent output only. IEEE Trans. Autom. Control 67(8), 4218–4225 (2022). https://doi.org/10.1109/TAC.2021.3115435

    Article  MATH  Google Scholar 

  32. Sahoo, A., Xu, H., Jagannathan, S.: Neural network-based event-triggered state feedback control of nonlinear continuous-time systems. IEEE Trans. Neural Netw. Learn. Syst. 27(3), 497–509 (2015). https://doi.org/10.1109/TNNLS.2015.2416259

    Article  Google Scholar 

  33. Sahoo, A., Xu, H., Jagannathan, S.: Near optimal event-triggered control of nonlinear discrete-time systems using neurodynamic programming. IEEE Trans. Neural Netw. Learn. Syst. 27(9), 1801–1815 (2015). https://doi.org/10.1109/TNNLS.2015.2453320

    Article  Google Scholar 

  34. Li, Y.-X., Yang, G.-H.: Model-based adaptive event-triggered control of strict-feedback nonlinear systems. IEEE Trans. Neural Netw. Learn. Syst. 29(4), 1033–1045 (2017). https://doi.org/10.1109/TNNLS.2017.2650238

    Article  Google Scholar 

  35. Li, Y.-X., Yang, G.-H.: Event-triggered adaptive backstepping control for parametric strict-feedback nonlinear systems. Int. J. Robust Nonlinear Control 28(3), 976–1000 (2018). https://doi.org/10.1002/rnc.3914

    Article  MATH  Google Scholar 

  36. Wang, J., Li, J., He, C., Liu, S.: Output regulation for the parametric strict-feedback system via the event-triggered adaptive updating algorithm. Appl. Math. Model. 96, 598–616 (2021). https://doi.org/10.1016/j.apm.2021.03.024

    Article  MATH  Google Scholar 

  37. He, C., Wang, J., Liu, S., Li, J.: Fault tolerant control for strict-feedback nonlinear system via event-triggered adaptive algorithms. ISA Trans. (2021). https://doi.org/10.1016/j.isatra.2021.08.012

    Article  Google Scholar 

  38. Choi, Y.H., Yoo, S.J.: Decentralized event-triggered tracking of a class of uncertain interconnected nonlinear systems using minimal function approximators. IEEE Trans. Syst. Man Cyber. Syst. 51(3), 1766–1778 (2021). https://doi.org/10.1109/TSMC.2019.2905627

    Article  Google Scholar 

  39. Huang, J., Wang, Q.-G.: Event-triggered adaptive control of a class of nonlinear systems. ISA Trans. 94, 10–16 (2019). https://doi.org/10.1016/j.isatra.2019.04.027

    Article  Google Scholar 

  40. Huang, J., Wang, W., Wen, C., Li, G.: Adaptive event-triggered control of nonlinear systems with controller and parameter estimator triggering. IEEE Trans. Autom. Control 65(1), 318–324 (2020). https://doi.org/10.1109/TAC.2019.2912517

  41. Han, S., Kommuri, S.K., Lee, S.: Affine transformed it2 fuzzy event-triggered control under deception attacks. IEEE Trans. Fuzzy Syst. 29(2), 322–335 (2021). https://doi.org/10.1109/TFUZZ.2020.2999779

    Article  Google Scholar 

  42. Hu, A., Park, J.H., Hu, M.: Consensus of nonlinear multiagent systems with intermittent dynamic event-triggered protocols. Nonlinear Dyn. 104, 1299–1313 (2021). https://doi.org/10.1007/s11071-021-06321-6

    Article  Google Scholar 

Download references

Acknowledgements

We would like to express our gratitude to the editor and reviewers for their time and remarkable suggestions to improve the quality of the manuscript. This work was supported by the National Natural Science Foundation of China [Grant Numbers 62003254, 61877046] and the Fundamental Research Funds for the Central Universities, China [Grant Number JB210710].

Funding

Funding This work was supported by the National Natural Science Foundation of China [Grant Numbers. 62003254, 61877046] and the Fundamental Research Funds for the Central Universities, China [Grant Number JB210710].

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by [CH], [SL], [JL] and [JW]. The first draft of the manuscript was written by [CH], and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Chao He.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Ethical approval

The work described has not been published before, it is not under consideration for publication anywhere else.

Consent to participate

Not applicable.

Consent for publication

Its publication has been approved by all co-authors.

Code availability

The simulation code of the presented algorithms are available in [Adaptive-NCS] repository, [https://github.com/ChaoMpc/Adaptive-NCS].

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, C., Liu, S., Li, J. et al. Adaptive control for the nonlinear event-triggered networked control system: a decoupling method. Nonlinear Dyn 111, 3411–3432 (2023). https://doi.org/10.1007/s11071-022-08010-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-022-08010-4

Keywords

Navigation