Skip to main content
Log in

Electrostatic nonlinear dispersive parametric mode interaction

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Understanding and controlling the nonlinear coupling in micro/nanomechanical resonators are of great importance to the exploitation of advanced devices. The recently observed electrostatic nonlinear parametric coupling is a very interesting topic. However, the theoretical model of the electrostatic parametric coupling remains unclear. This paper explicitly derives the model and the electrostatically induced dispersive parametric coupling which reveals the ability to tune the bifurcation topology of capacitive resonators is analyzed based on the multiple-time-scale method. A novel displacement-to-frequency transduction scheme based on this electrostatic dispersive parametric coupling effect is proposed. The transduction sensitivity is theoretically given, which indicates that this electrostatic dispersive transduction scheme can provide even more design freedoms than the existing displacement-to-frequency transduction scheme based on tension modulation. In addition, a bifurcation reversal effect is predicted in the strong actuated states of the dispersive parametric coupled system, which reveals the ability to tune the bifurcation topology of capacitive resonators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The datasets analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Nguyen, C.T.C.: MEMS technology for timing and frequency control. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54, 251–270 (2007)

    Article  Google Scholar 

  2. Ng, E., Yang, Y., Hong, V.A., Ahn, C.H., Heinz, D.B., Flader, I., Chen, Y., Everhart, C.L.M., Kim, B., Melamud, R., Candler, R.N., Hopcroft, M.A., Salvia, J.C., Yoneoka, S., Graham, A.B., Agarwal, M., Messana, M.W., Chen, K.L., Lee, H.K., Wang, S., Bahl, G., Qu, V., Chiang, C.F., Kenny, T.W., Partridge, A., Lutz, M., Yama, G., O’Brien, G.J.: The long path from MEMS resonators to timing products. In: IEEE International Conference on Micro Electro Mechanical Systems, pp. 1–2 (2015)

  3. Roy, S.K., Sauer, V.T.K., Westwood-Bachman, J.N., Venkatasubramanian, A., Hiebert, W.K.: Improving mechanical sensor performance through larger damping. Science 360, 5220 (2018)

    Article  Google Scholar 

  4. Moser, J., Güttinger, J., Eichler, A., Esplandiu, M.J., Liu, D.E., Dykman, M.I., Bachtold, A.: Ultrasensitive force detection with a nanotube mechanical resonator. Nat. Nanotechnol. 8, 493–496 (2013)

    Article  Google Scholar 

  5. Middlemiss, R.P., Samarelli, A., Paul, D.J., Hough, J., Rowan, S., Hammond, G.D.: Measurement of the Earth tides with a MEMS gravimeter. Nature 531, 614–617 (2016)

    Article  Google Scholar 

  6. Hafifiz, M.A.A., Kosuru, L., Younis, M.I.: Microelectromechanical reprogrammable logic device. Nat. Commun. 7, 11137 (2016)

    Article  Google Scholar 

  7. Hatanaka, D., Mahboob, I., Onomitsu, K., Yamaguchi, H.: Phonon waveguides for electromechanical circuits. Nat. Nanotechnol. 9, 520–524 (2014)

    Article  Google Scholar 

  8. Riedinger, R., Wallucks, A., Marinkovic, I., Löschnauer, C., Aspelmeyer, M., Hong, S., Gröblacher, S.: Remote quantum entanglement between two micromechanical oscillators. Nature 556, 473–477 (2018)

    Article  Google Scholar 

  9. Wollman, E.E., Lei, C.U., Weinstein, A.J., Suh, J., Kronwald, A., Marquardt, F., Clerk, A.A., Schwab, K.C.: Quantum squeezing of motion in a mechanical resonator. Science 349, 952–955 (2015)

    Article  MATH  Google Scholar 

  10. Zhao, C., Montaseri, M.H., Wood, G.S., Pu, S.H., Seshia, A.A., Kraft, M.: A review on coupled MEMS resonators for sensing applications utilizing mode localization. Sens. Actuators, A 249, 93–111 (2016)

    Article  Google Scholar 

  11. Kenig, E., Cross, M.C., Lifshitz, R., Karabalin, R.B., Villanueva, L.G., Matheny, M.H., Roukes, M.L.: Passive phase noise cancellation scheme. Phys. Rev. Lett. 108, 264102 (2012)

    Article  Google Scholar 

  12. Antonio, D., Zanette, D.H., López, D.: Frequency stabilization in nonlinear micromechanical oscillators. Nat. Commun. 3, 806 (2012)

    Article  Google Scholar 

  13. Westra, H.J.R., Poot, M., van der Zant, H.S.J., Venstra, W.J.: Nonlinear modal interactions in clamped-clamped mechanical resonators. Phys. Rev. Lett. 105, 117205 (2010)

    Article  Google Scholar 

  14. Eichler, A., Del Álamo Ruiz, M., Plaza, J.A., Bachtold, A.: Strong coupling between mechanical modes in a nanotube resonator. Phys. Rev. Lett. 109, 025503 (2012)

    Article  Google Scholar 

  15. Faust, T., Rieger, J., Seitner, M.J., Krenn, P., Kotthaus, J.P., Weig, E.M.: Nonadiabatic dynamics of two strongly coupled nanomechanical resonator modes. Phys. Rev. Lett. 109, 037205 (2012)

    Article  Google Scholar 

  16. Matheny, M.H., Villanueva, L.G., Karabalin, R.B., Sader, J.E., Roukes, M.L.: Nonlinear mode-coupling in nanomechanical systems. Nano Lett. 13, 1622–1626 (2013)

    Article  Google Scholar 

  17. Okamoto, H., Gourgout, A., Chang, C.Y., Onomitsu, K., Mahboob, I., Chang, E.Y., Yamaguchi, H.: Coherent phonon manipulation in coupled mechanical resonators. Nat. Phys. 9, 598–598 (2013)

    Article  Google Scholar 

  18. Mahboob, I., Perrissin, N., Nishiguchi, K., Hatanaka, D., Okazaki, Y., Fujiwara, A., Yamaguchi, H.: Dispersive and dissipative coupling in a micromechanical resonator embedded with a nanomechanical resonator. Nano Lett. 15, 2312–2317 (2015)

    Article  Google Scholar 

  19. Zhou, X., Zhao, C., Xiao, D., Sun, J., Sobreviela, G., Gerrard, D.D., Chen, Y., Flader, I., Kenny, T.W., Wu, X., Seshia, A.A.: Dynamic modulation of modal coupling in microelectromechanical gyroscopic ring resonators. Nat. Commun. 10, 4980 (2019)

    Article  Google Scholar 

  20. Mahboob, I., Mounaix, M., Nishiguchi, K., et al.: A multimode electromechanical parametric resonator array. Sci. Rep. 4, 4448 (2014)

    Article  Google Scholar 

  21. Karabalin, R.B., Cross, M.C., Roukes, M.L.: Nonlinear dynamics and chaos in two coupled nanomechanical resonators. Phys. Rev. B 79, 165309 (2009)

    Article  Google Scholar 

  22. Venstra, W.J., van Leeuwen, R., van der Zant, H.S.J.: Strongly coupled modes in a weakly driven micromechanical resonator. Appl. Phys. Lett. 101, 243111 (2012)

    Article  Google Scholar 

  23. Mahboob, I., Nishiguchi, K., Okamoto, H., Yamaguchi, H.: Phonon-cavity electromechanics. Nat. Phys. 8, 387–392 (2012)

    Article  Google Scholar 

  24. Li, L., Zhang, Q., Wang, W., et al.: Nonlinear coupled vibration of electrostatically actuated clamped–clamped microbeams under higher-order modes excitation. Nonlinear Dyn 90, 1593–1606 (2017)

    Article  Google Scholar 

  25. Lu, K., Li, Q., Zhou, X., Song, G., Wu, K.D.: Modal coupling effect in a novel nonlinearmicromechanical resonator. Micromachines 11, 472 (2020)

    Article  Google Scholar 

  26. Lu, K., Zhou, X., Li, Q., Wu, K., Zhang, Y., Zhuo, M., Wu, X., Xiao, D.A.: Wide range frequency coherent modulation control based on modal coupling effect in MEMS resonators. In: 2021 IEEE 34th international conference on micro electro mechanical systems (MEMS), pp. 161–164 (2021)

  27. Agrawal, D.K., Woodhouse, J., Seshia, A.A.: Observation of locked phase dynamics and enhanced frequency stability in synchronized micromechanical oscillators. Phys. Rev. Lett. 111, 084101 (2013)

    Article  Google Scholar 

  28. Husain, A., Hone, J., Postma, C., Henk, W., Huang, X.M.H.: Nanowire-based very-high-frequency electromechanical resonator. Appl. Phys. Lett. 83, 1240–1240 (2003)

    Article  Google Scholar 

  29. Sazonova, V., Yaish, Y., Ustunel, H., Roundy, D., Arias, T.A., Mceuen, P.L.: A tunable carbon nanotube electromechanical oscillator. Nature 431, 284–287 (2012)

    Article  Google Scholar 

  30. Wen, Y., Ares, N., Schupp, F.J., Pei, T., Laird, E.A.: A coherent nanomechanical oscillator driven by single-electron tunnelling. Nat. Phys. 16, 1–8 (2020)

    Article  Google Scholar 

  31. Lifshitz, R., Cross, M.C.: Nonlinear Dynamics of Nanomechanical and Micromechanical Resonators, pp. 1–52. Wiley-VCH Verlag GmbH & Co. KGaA, New York (2008)

    MATH  Google Scholar 

  32. Nayfeh, A.H., Mook, D.T.: Nonlinear Oscillations. Wiley-VCH Verlag GmbH & Co KGaA, New York (1995)

    Book  MATH  Google Scholar 

  33. Nayfeh, A.H.: Perturbation Methods. Wiley-VCH, New York (1973)

    MATH  Google Scholar 

  34. Kambali, P.N., Pandey, A.K.: Nonlinear coupling of transverse modes of a fixed–fixed microbeam under direct and parametric excitation. Nonlinear Dyn. 87, 1271–1294 (2017)

    Article  MATH  Google Scholar 

  35. Daeichin, M., Miles, R., Towfighian, S.: Lateral pull-in instability of electrostatic MEMS transducers employing repulsive force. Nonlinear Dyn 100, 1927–1940 (2020)

    Article  Google Scholar 

  36. Holmes, P.J., Rand, D.A.: The bifurcations of duffing’s equation: an application of catastrophe theory. J. Sound Vib. 44, 237–253 (1976)

    Article  MATH  Google Scholar 

  37. Candler, R.N., et al.: Impact of geometry on thermoelastic dissipation in micromechanical resonant beams. J. Microelectromech. Syst. 15(4), 927–934 (2006)

    Article  Google Scholar 

  38. Duwel, A., Candler, R.N., Kenny, T.W., Varghese, M.: Engineering MEMS resonators with low thermoelastic damping. J. Microelectromech. Syst. 15(6), 1437–1445 (2006)

    Article  Google Scholar 

  39. Zhou, X., Xiao, D., Wu, X., Li, W.Y.: Mitigating thermoelastic dissipation of flexural micromechanical resonators by decoupling resonant frequency from thermal relaxation rate. Phys. Rev. Appl. 8, 064033 (2017)

    Article  Google Scholar 

  40. Khan, R., Massel, F., Heikkilä, T.T.: Tension-induced nonlinearities of flexural modes in nanomechanical resonators. Phys. Rev. B 87, 235406 (2013)

    Article  Google Scholar 

  41. Zou, X., Thiruvenkatanathan, P., Seshia, A.A.: A seismic-grade resonant MEMS accelerometer. J. Microelectromech. Syst. 23, 768–770 (2014)

    Article  Google Scholar 

  42. Mustafazade, A., Pandit, M., Zhao, C., Sobreviela, G., Du, Z., Steinmann, P., Zou, X., Howe, R.T., Seshia, A.A.: A vibrating beam MEMS accelerometer for gravity and seismic measurements. Sci. Rep. 10, 10415 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank Prof. Ashwin Seshia from the University of Cambridge for guidance.

Funding

This research was funded by the National Natural Science Foundation of China (grant number 51905539 and U21A20505), the Young Elite Scientist Sponsorship Program by CAST (grant number YESS20200127), and the Natural Science Foundation of Hunan Province for Excellent Young Scientists (grant number 2021JJ20049).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Zhou.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

The authors state that this research complies with ethical standards.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, X., Zhou, X., Ren, X. et al. Electrostatic nonlinear dispersive parametric mode interaction. Nonlinear Dyn 111, 3081–3097 (2023). https://doi.org/10.1007/s11071-022-08007-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-022-08007-z

Keywords

Navigation