Skip to main content
Log in

Fast finite-time command filter-based adaptive composite tracking control for nonlinear systems

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper investigates the fast finite-time (FFT) command filter-based adaptive composite tracking control problem for strict-feedback nonlinear systems subject to uncertain parameters and external disturbances. By introducing the adaptive control methodology, the uncertain parameters existing in the considered system can be estimated online. Then, by using the command-filter technology and adaptive disturbance observers, the composite adaptive laws are developed. They can make the FFT approximation performances for the uncertain parameters be achieved. In particular, in order to fill the capacity of using the serial-parallel estimation models (SPEMs) to improve the approximation of adaptive parameters, which is not available in the current literatures, the SPEMs are first tried to improve the estimation performance for the unknown parameters and, for dealing with the ‘explosion of complexity’ problem during the fast finite-time controller design procedure, an FFT convergence command filter is developed to handle such problem. By utilizing the backstepping control technique, a novel adaptive FFT tracking controller is developed. Moreover, it can guarantee that all the internal signals are bounded and the system output can track the reference signal within finite-time interval. Eventually, the utilizability of the proposed controller is provided by the simulation example.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Data Availability

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Tabuada, P.: Event-triggered real-time scheduling of stabilizing control tasks. IEEE Trans. Autom. Control 52(9), 1680–1685 (2007)

    Article  MATH  Google Scholar 

  2. Xing, L., Wen, C., Liu, Z., Su, H., Cai, J.: Event-triggered adaptive control for a class of uncertain nonlinear systems. IEEE Trans. Autom. Control 62(4), 2071–2067 (2017)

    Article  MATH  Google Scholar 

  3. Jiang, Z., Liu, T., Zhang, P.: Event-triggered control of nonlinear systems: a small-gain paradigm. IEEE International Conference on Control and Automation, pp. 242–247 (2017)

  4. Gao, Y.F., Du, X., Ma, Y., Sun, X.M.: Stabilization of nonlinear systems using event-triggered controllers with dwell times. Inf. Sci. 457–458, 156–165 (2018)

    Article  MATH  Google Scholar 

  5. Liu, T., Jiang, Z.P.: Event-triggered control of nonlinear systems with state quantization. IEEE Trans. Autom. Control 64(2), 797–803 (2019)

    MATH  Google Scholar 

  6. Fan, Y.Q., Yang, G.H.: Sampled-data output feedback control based on a new event-triggered control scheme. Inf. Sci. 414, 306–318 (2017)

    Article  MATH  Google Scholar 

  7. Huang, J., Wang, W., Wen, C., Li, G.: Adaptive event-triggered control of nonlinear systems with controller and parameter estimator triggering. IEEE Trans. Autom. Control 65(1), 318–324 (2020)

    Article  MATH  Google Scholar 

  8. Bhat, S., Bernstein, D.: Continuous finite-time stabilization of the translational and rotational double integrators. IEEE Trans. Autom. Control 43(5), 678–682 (1998)

    Article  MATH  Google Scholar 

  9. Bhat, S., Bernstein, D.: Finite-time stability of continuous autonomous systems. SIAM J. Control Optim. 38(3), 751–766 (2000)

    Article  MATH  Google Scholar 

  10. Sun, Z., Liu, C., Su, S., Sun, W.: Robust stabilization of high-order nonlinear systems with unknown sensitivities and applications in humanoid robot manipulation. IEEE Trans. Syst. Man Cybern. 51(7), 4409–4416 (2021)

    Article  Google Scholar 

  11. Jia, T., Niu, Y., Zou, Y.: Sliding mode control for stochastic systems subject to packet losses. Inf. Sci. 217, 117–126 (2012)

    Article  MATH  Google Scholar 

  12. Dai, J., Guo, G.: Event-triggered leader-following consensus for multi-agent systems with semi-Markov switching topologies. Inf. Sci. 459, 290–301 (2018)

    Article  MATH  Google Scholar 

  13. Gupta, V., Mittal, M., Mittal, V.: Chaos theory: an emerging tool for arrhythmia detection. Sens. Imaging 21(1), 1–22 (2020)

    Article  Google Scholar 

  14. Gupta, V., Mittal, M.: QRS complex detection using STFT, chaos analysis, and PCA in standard and real-time ECG databases. J. Inst. Eng. (India) Ser. B 100(5), 489–497 (2019)

    Article  Google Scholar 

  15. Gupta, V., Mittal, M., Mittal, V.: R-peak detection based chaos analysis of ECG signal. Analog Integr. Circ. Sig. Process 102(3), 479–490 (2020)

    Article  Google Scholar 

  16. Gupta, V., Mittal, M., Mittal, V.: Chaos theory and ARTFA: emerging tools for interpreting ECG signals to diagnose cardiac arrhythmias. Wirel. Pers. Commun. 118(4), 3615–3646 (2021)

    Article  Google Scholar 

  17. Gupta, V., Mittal, M., Mittal, V.: R-peak detection using chaos analysis in standard and real time ECG databases. IRBM 40(6), 341–354 (2019)

    Article  Google Scholar 

  18. Gupta, V., Chaturvedi, Y., Kumar, P., Kanungo, A., Kumar, P.: Attractor plot as an emerging tool in ECG signal processing for improved health informatics. In Recent Advances in Manufacturing, Automation, Design and Energy Technologies. Springer, Singapore. 359-367 (2022)

  19. Gupta, V., Mittal, M., Mittal, V., Saxena, N.K.: A critical review of feature extraction techniques for ECG signal analysis. J. Inst. Eng. (India) Ser. B 102(5), 1049–1060 (2021)

    Article  Google Scholar 

  20. Gupta, V., Mittal, M.: Electrocardiogram signals interpretation using Chaos theory. J. Adv. Res. Dyn. Control Syst. 10(2), 2392–2397 (2018)

    Google Scholar 

  21. Wang, H.Q., Tong, M., Zhao, X.D., Niu B., Yang M.: Predefined-Time Adaptive Neural Tracking Control of Switched Nonlinear Systems. IEEE Transactions on Cybernetics. https://doi.org/10.1109/TCYB.2022.3204275 (2022)

  22. Ma, J.W., Wang, H.Q., Qiao, J.F.: Adaptive Neural Fixed-Time Tracking Control for High-Order Nonlinear Systems. IEEE Transactions on Neural Networks and Learning Systems. https://doi.org/10.1109/TNNLS.2022.3176625 (2022)

  23. Shen, L.Y., Wang, H.Q., Yue, H.X.: Prescribed Performance Adaptive Fuzzy Control for Affine Nonlinear Systems with State Constraints. IEEE Transactions on Fuzzy Systems. https://doi.org/10.1109/TFUZZ.2022.3175606 (2022)

  24. Wang, H.Q., Chen, M., Liu, X.P.: Fuzzy adaptive fixed-time quantized feedback control for a class of nonlinear systems. Acta Autom. Sin. 47(12), 2823–2830 (2021)

    Google Scholar 

  25. Yuan, L.E., Li, T.S., Tong, S.C., Xiao, Y., Gao, X.Y.: NN adaptive optimal tracking control for a class of uncertain nonstrict feedback nonlinear systems. Neurocomputing 491, 382–394 (2022)

    Article  Google Scholar 

  26. Xu, Y.Y., Li, T.S, Yang, Y., Shan, Q.H., Tong, S.C., Chen, C.L.P.: Anti-Attack Event-Triggered Control for Nonlinear Multi-Agent Systems With Input Quantization. IEEE transactions on neural networks and learning systems. https://doi.org/10.1109/TNNLS.2022.3164881 (2022)

  27. Liu, S.W., Wang, H.Q., Li, T.S., Xu, K.: Adaptive Neural Fixed-time Control for Uncertain Nonlinear Systems. IEEE Transactions on Circuits and Systems II: Express Briefs. https://doi.org/10.1109/TCSII.2022.3146840 (2022)

  28. Shen, Y., Huang, Y.: Global finite-time stabilisation for a class of nonlinear systems. Int. J. Syst. 43, 73–78 (2012)

    Article  MATH  Google Scholar 

  29. Sun, Z., Shao, Y., Chen, C.: Fast finite-time stability and its application in adaptive control of high-order nonlinear system. Automatica 106, 339–348 (2019)

  30. Sun, Z.Y., Yun, M.M., Li, T.: A new approach to fast global finite-time stabilization of high-order nonlinear system. Automatica 81, 455–463 (2017)

    Article  MATH  Google Scholar 

  31. Zhou, X., Gao, C., Li, Z.G., Ouyang, X.Y., Wu, L.B.: Observer-based adaptive fuzzy finite-time prescribed performance tracking control for strict-feedback systems with input dead-zone and saturation. Nonlinear Dyn. 103, 1645–1661 (2021)

    Article  Google Scholar 

  32. Chen, M., Shi, P., Lim, C.C.: Robust constrained control for MIMO nonlinear systems based on disturbance observer. IEEE Trans. Autom. Control 60(12), 3281–3286 (2015)

    Article  MATH  Google Scholar 

  33. Zhang, Z.C., Wu, Y.Q.: Switching-based asymptotic stabilisation of underactuated ships with non-diagonal terms in their system matrices. IET Control Theory Appl. 9, 972–980 (2015)

  34. Ding, S., Liu, L., Zheng, W.X.: Sliding mode direct yaw-moment control design for in-wheel electric vehicles. IEEE Trans. Ind. Electron. 64(8), 6752–6762 (2017)

    Article  Google Scholar 

  35. Polycarpou, M.M.: Stable adaptive neural control scheme for nonlinear systems. IEEE Trans. Autom. Control 41(3), 447–451 (1996)

  36. Chen, W.H., Yang, J., Guo, L., Li, S.: Disturbance-observer-based control and related methods-An overview. IEEE Trans. Ind. Electron. 63(2), 1083–1095 (2016)

    Article  Google Scholar 

  37. Wu, L.B., Park, J.H., Xie, X.P., Liu, Y.J.: Neural network adaptive tracking control of uncertain MIMO nonlinear systems with output constraints and event-triggered inputs. IEEE Trans. Neural Netw. Learn. Syst. 32(2), 695–707 (2021)

    Article  Google Scholar 

  38. Ding, J.L., Zhang, W.H.: Finite-time adaptive control for nonlinear systems with uncertain parameters based on the command filters. Int. J. Adapt. Control Signal Process. 35(9), 1754–1767 (2021)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported in part by the National Natural Science Foundation of China under Grant No. 51939001, No. 61976033 and No. 62173046, and in part by the Liaoning Revitalization Talents Program under Grant No. XLYC1908018.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huanqing Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, S., Li, T. & Wang, H. Fast finite-time command filter-based adaptive composite tracking control for nonlinear systems. Nonlinear Dyn 111, 3393–3409 (2023). https://doi.org/10.1007/s11071-022-08006-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-022-08006-0

Keywords

Navigation