Skip to main content
Log in

Ordinal network-based affine invariant Riemannian measure and its expansion: powerful similarity measure tools for complex systems

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The ordinal network is an effective method to characterize the dynamic features of time series. Meanwhile, Riemannian geometry is an important mathematical tool widely used in pattern recognition and machine learning. In this article, we propose an ordinal network-based affine invariant Riemannian measure (ONAIRM), which can measure the shape-based similarity of dynamic evolution between systems. The robustness and effectiveness of ONAIRM are verified by simulation data. Then, we propose the classical multidimensional scaling method based on ONAIRM and validate that it can distinguish the stochastic processes, periodic data, and chaotic systems. Finally, we extend the ONAIRM with the purpose of classification and prediction of complex systems, the ONAIRM-based agglomerative hierarchical clustering algorithm and ONAIRM-based Riemannian mean classification algorithm are proposed and applied to the research of physiological data and rail corrugation. The empirical results show that they have better performance than other similarity calculation methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

The rail corrugation data used in the current study are provided by China academy of railway sciences corporation limited. The physiological datasets are publicly available in the Physionet, [https://physionet.org/].

References

  1. Tian, Z.: Chaotic characteristic analysis of network traffic time series at different time scales. Chaos Solitons Fractals 130, 109412 (2020)

    Article  MATH  Google Scholar 

  2. Thomy, H.M.: Temporal rainfall disaggregation using a micro-canonical cascade model: possibilities to improve the autocorrelation. Hydrol. Earth Syst. Sci. 24(1), 169–188 (2020)

    Article  Google Scholar 

  3. Shang, P., Lu, Y., Kamae, S.: Detecting long-range correlations of traffic time series with multifractal detrended fluctuation analysis. Chaos Solitons Fractals 36(1), 82–90 (2008)

    Article  Google Scholar 

  4. Alex, P., Perumal, M., Sinha, S.K.: Coexistence of chaotic and complexity dynamics of fluctuations with long-range temporal correlations under typical condition for formation of multiple anodic double layers in dc glow discharge plasma. Nonlinear Dyn. 101, 655–673 (2020)

    Article  Google Scholar 

  5. Sakhaii, P., Haase, B., Bermel, W.: Broadband homodecoupled heteronuclear multiple bond correlation spectroscopy. J. Magn. Reson. 228, 125–129 (2013)

    Article  Google Scholar 

  6. Marrero, O.: A bayesian test for seasonality in medical data. Int. J. Biomath. 15(1), 2150085 (2022)

    Article  Google Scholar 

  7. Zamani, A., Haghbin, H., Hashemi, M., Hyndman, R.J.: Seasonal functional autoregressive models. J. Time Ser. Anal. 43(2), 197–218 (2022)

    Article  MATH  Google Scholar 

  8. Roberto, B., Francesco, B., Domenico, C.: Periodic autoregressive models for time series with integrated seasonality. J. Stat. Comput. Simul. 91(4), 694–712 (2021)

    Article  MATH  Google Scholar 

  9. Xu, M., Shang, P.: Multiscale time irreversibility analysis of financial time series based on segmentation. Nonlinear Dyn. 94, 1603–1618 (2018)

    Article  Google Scholar 

  10. Yao, W., Dai, J., Perc, M., Wang, J., Yao, D., Guo, D.: Permutation-based time irreversibility in epileptic electroencephalograms. Nonlinear Dyn. 100, 907–919 (2020)

    Article  Google Scholar 

  11. Lacasa, L., Luque, B., Ballesteros, F., Luque, J., Nuno, J.C.: From time series to complex networks: The visibility graph. Proc. Natl. Acad. Sci. 105(13), 4972–4975 (2008)

    Article  MATH  Google Scholar 

  12. Ivanov, P., Amaral, L., Goldberger, A., Havlin, S., Rosenblum, M., Struzik, Z., Stanley, H.: Multifractality in human heartbeat dynamics. Nature 399, 461–465 (1999)

    Article  Google Scholar 

  13. Fernandes, L.H., Araújo, F.H., Silva, I.E., Leite, U.P., de Lima, N.F., Stosic, T., Ferreira, T.A.: Multifractal behavior in the dynamics of Brazilian inflation indices. Phys. A 550, 124158 (2020)

    Article  Google Scholar 

  14. Mao, X., Shang, P., Li, Q.: Multivariate multiscale complexity-entropy causality plane analysis for complex time series. Nonlinear Dyn. 96, 2449–2462 (2019)

    Article  MATH  Google Scholar 

  15. Bouezmarni, T., Lemyre, F.C., Quessy, J.F.: Inference on local causality and tests of non-causality in time series. Electron. J. Stat. 13(2), 4121–4156 (2019)

    Article  MATH  Google Scholar 

  16. Zunino, L., Zanin, M., Tabak, B., Pérez, D., Rosso, O.: Complexity-entropy causality plane: a useful approach to quantify the stock market inefficiency. Phys. A 389, 1891–1901 (2010)

    Article  Google Scholar 

  17. Podobnik, B., Stanley, H.E.: Detrended cross-correlation analysis: a new method for analyzing two non-stationary time series. Phys. Rev. Lett. 100, 38–71 (2008)

    Article  Google Scholar 

  18. Zebende, G.: Dcca cross-correlation coefficient: quantifying level of cross-correlation. Phys. A 390(4), 614–618 (2011)

    Article  Google Scholar 

  19. Wang, F., Liao, G., Zhou, X., Shi, W.: Multifractal detrended cross-correlation analysis for power markets. Nonlinear Dyn. 72, 353–363 (2013)

    Article  Google Scholar 

  20. Górecki, T.: Classification of time series using combination of DTW and LCSS dissimilarity measures. Commun. Stat. Simul. Comput. 47(1), 263–276 (2018)

    Article  MATH  Google Scholar 

  21. Ye, Y., Niu, C., Jiang, J., Ge, B., Yang, K.: A shape based similarity measure for time series classification with weighted dynamic time warping algorithm. In: 2017 4th International Conference on Information Science and Control Engineering (ICISCE), pp. 104–109 (2017)

  22. Liu, S., Ji, G., Li, W.: A similarity measure for time series of spatial lines intersection relations. In: Proceedings 2011 IEEE International Conference on Spatial Data Mining and Geographical Knowledge Services, pp. 13–15 (2011)

  23. Li, H., Fang, L., Wang, P., Liu, J.: An algorithm based on piecewise slope transformation distance for short time series similarity measure. In: Proceedings of the 10th World Congress on Intelligent Control and Automation, pp. 691–695 (2012)

  24. Li, Z., Zhang, H., Wu, S., Zhao, Y.: Similarity measure of time series based on feature extraction. In: 2020 IEEE 5th International Conference on Cloud Computing and Big Data Analytics (ICCCBDA), pp. 13–16 (2020)

  25. Dong, X., Gu, C., Wang, Z.: Research on shape-based time series similarity measure. In: 2006 International Conference on Machine Learning and Cybernetics, pp. 1253–1258 (2006)

  26. Yu, K., Guo, G., Li, J., Lin, S.: Quantum algorithms for similarity measurement based on Euclidean distance. Int. J. Theor. Phys. 59, 3134–3144 (2020)

    Article  MATH  Google Scholar 

  27. Sverko, Z., Vrankić, M., Vlahinic, S., Rogelj, P.: Complex Pearson correlation coefficient for EEG connectivity analysis. Sensors 22, 1477 (2022)

    Article  Google Scholar 

  28. Feng, L., Zhao, X., Liu, Y., Yao, Y., Jin, B.: A similarity measure of jumping dynamic time warping. In: 2010 Seventh International Conference on Fuzzy Systems and Knowledge Discovery, vol. 4, pp. 1677–1681 (2010)

  29. Wang, D., Rong, G.: Pattern distance of time series. J. Zhejiang Univ. Eng. Sci. 38(7), 795–798 (2004)

    Google Scholar 

  30. Keogh, E., Chakrabarti, K., Pazzani, M., Mehrotra, S.: Dimensionality reduction for fast similarity search in large time series databases. Knowl. Inf. Syst. 3, 263–286 (2001)

    Article  MATH  Google Scholar 

  31. Zhang, J., Small, M.: Complex network from pseudoperiodic time series: topology versus dynamics. Phys. Rev. Lett. 96, 238701 (2006)

    Article  Google Scholar 

  32. Donner, R., Zou, Y., Donges, J., Marbert, N., Kurths, J.: Recurrence networks: a novel paradigm for nonlinear time series analysis. New J. Phys. 12(3), 033025 (2010)

    Article  MATH  Google Scholar 

  33. Zou, Y., Small, M., Liu, Z., Kurths, J.: Complex network approach to the statistical features of the sunspot series. New J. Phys. 16, 013051 (2014)

    Article  Google Scholar 

  34. Nicolis, G., Ros, A., Nicolis, C.: Dynamical aspects of interaction networks. Int. J. Bifurc. Chaos 15(11), 3467–3480 (2005)

    Article  MATH  Google Scholar 

  35. Shirazi, A.H., Jafari, G.R., Davoudi, J., Peinke, J., Tabar, M., Sahimi, M.: Mapping stochastic processes onto complex networks. J. Stat. Mech. Theory Exp. 2009(7), P07046 (2009)

    Article  Google Scholar 

  36. Small, M.: Complex networks from time series: Capturing dynamics. In: IEEE International Symposium on Circuits and Systems, pp. 2509–2512 (2013)

  37. Gudmundsson, S.: An Introduction to Riemannian Geometry. Lund University, Lund (2021)

    Google Scholar 

  38. Quang, M.H.: Affine-invariant Riemannian distance between infinite-dimensional covariance operators. In: International Conference on Networked Geometric Science of Information, vol. 9389, pp. 30–38 (2015)

  39. Tuzel, O., Porikli, F., Meer, P.: Human detection via classification on Riemannian manifolds. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 18–23 (2007)

  40. Bandt, C., Pompe, B.: Permutation entropy: a natural complexity measure for time series. Phys. Rev. Lett. 88(17), 174102 (2002)

    Article  Google Scholar 

  41. Podobnik, B., Horvatic, D., Lam, A., Stanley, H., Ivanov, P.: Modeling long-range cross-correlations in two-component ARFIMA and FIARCH processes. Phys. A 387, 3954–3959 (2008)

    Article  Google Scholar 

  42. Saeed, N., Nam, H., Haq, M., Bhatti, D.M.: A survey on multidimensional scaling. ACM Comput. Surv. 51(3), 1–25 (2018)

    Article  Google Scholar 

  43. Saeed, N., Nam, H., Naffouri, T.A., Alouini, M.S.: A state-of-the-art survey on multidimensional scaling-based localization techniques. IEEE Commun. Surv. Tutor. 21(4), 3565–3583 (2019)

    Article  Google Scholar 

  44. Petrutiu, S., Sahakian, A.V., Swiryn, S.: Abrupt changes in fibrillatory wave characteristics at the termination of paroxysmal atrial fibrillation in humans. Europace 9(7), 466–470 (2007)

    Article  Google Scholar 

  45. Goldberger, A.L., Amaral, L.A.N., Glass, L., Hausdorff, J.M., Ivanov, P.C., Mark, R.G., Mietus, J.E., Moody, G.B., Peng, C., Stanley, H.E.: PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals. Circulation [Online] 101(23), e215–e220 (2000)

  46. Baim, D., Colucci, W., Monrad, E., Smith, H., Wright, R., Lanoue, A., Gauthier, D., Ransil, B., Grossman, W., Braunwald, E.: Survival of patients with severe congestive heart failure treated with oral milrinone. J. Am. Coll. Cardiol. 7(3), 661–670 (1986)

    Article  Google Scholar 

Download references

Funding

This study is supported by the funds of the Fundamental Research Funds for the Central Universities (2021YJS166), China Academy of Railway Science Cooperation Limited (2019YJ153) and the National Natural Science Foundation of China (62171018).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhuo Wang.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Shang, P. & Mao, X. Ordinal network-based affine invariant Riemannian measure and its expansion: powerful similarity measure tools for complex systems. Nonlinear Dyn 111, 3587–3603 (2023). https://doi.org/10.1007/s11071-022-07991-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-022-07991-6

Keywords

Navigation