Skip to main content
Log in

Multipole solitons in saturable nonlinear lattices

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

We demonstrate that both fundamental and multipole soliton families can be generated and stabilized in purely saturable nonlinear lattices, which can be readily realized in nonlinear optics or Bose–Einstein condensates. The waveforms and soliton power of these soliton families, produced in the nonlinear Schrödinger equation, are highly affected by the propagation constant and the strength of nonlinearity. In particular, the amplitude of solitons increases with the increase of the propagation constant, while it decreases with the increase of the strength of nonlinearity. We investigate in detail the stability of such solitons. Beside the perturbed propagation, the stable propagation with modulated parameters that can change during propagation, is also considered, e.g., the one with the modulation of the period of the nonlinear lattice and the other one with the modulation of the strength of saturation. It is verified that the rules of variation for all soliton families are consistent with the ones for modulated parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The datasets generated during and analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Kivshar, Y.S., Malomed, B.A.: Dynamics of solitons in nearly integrable systems. Rev. Mod. Phys. 61, 763–915 (1989)

    Google Scholar 

  2. Kartashov, Y.V., Malomed, B.A., Torner, L.: Solitons in nonlinear lattices. Rev. Mod. Phys. 83, 247–305 (2011)

    Google Scholar 

  3. Konotop, V.V., Yang, J., Zezyulin, D.A.: Nonlinear waves in \(\cal{PT} \)-symmetric systems. Rev. Mod. Phys. 88, 035002 (2016)

    Google Scholar 

  4. Zeng, L., Zeng, J., Kartashov, Y.V., Malomed, B.A.: Purely Kerr nonlinear model admitting flat-top solitons. Opt. Lett. 44, 1206–1209 (2019)

    Google Scholar 

  5. Zeng, L., Malomed, B.A., Mihalache, D., Cai, Y., Lu, X., Zhu, Q., Li, J.: Flat-floor bubbles, dark solitons, and vortices stabilized by inhomogeneous nonlinear media. Nonlinear Dyn. 106, 815–830 (2021)

    Google Scholar 

  6. Malomed, B.A., Mihalache, D., Wise, F., Torner, L.: Spatiotemporal optical solitons. J. Opt. B 7, R53–R72 (2005)

    Google Scholar 

  7. Leblond, H., Mihalache, D.: Models of few optical cycle solitons beyond the slowly varying envelope approximation. Phys. Rep. 523, 61–126 (2013)

    MATH  Google Scholar 

  8. Kartashov, Y.V., Astrakharchik, G.E., Malomed, B.A., Torner, L.: Frontiers in multidimensional self-trapping of nonlinear fields and matter. Nat. Rev. Phys. 1, 185–197 (2019)

    Google Scholar 

  9. Wang, Q., Liang, G.: Vortex and cluster solitons in nonlocal nonlinear fractional Schrödinger equation. J. Opt. 22, 055501 (2020)

    Google Scholar 

  10. Zeng, L., Zeng, J.: Modulated solitons, soliton and vortex clusters in purely nonlinear defocusing media. Ann. Phys. 421, 168284 (2020)

    MATH  Google Scholar 

  11. Wang, Q., Mihalache, D., Belić, M.R., Zhang, L., Ke, L., Zeng, L.: Controllable propagation paths of gap solitons. Opt. Lett. 47, 1041–1044 (2022)

    Google Scholar 

  12. Zeng, L., Konotop, V.V., Lu, X., Cai, Y., Zhu, Q., Li, J.: Localized modes and dark solitons sustained by nonlinear defects. Opt. Lett. 46, 2216–2219 (2021)

    Google Scholar 

  13. Nore, C., Brachet, M.E., Fauve, S.: Numerical study of hydrodynamics using the nonlinear Schrödinger equation. Phys. D 65, 154–162 (1993)

    MATH  Google Scholar 

  14. Salasnich, L.: Hydrodynamics of Bose and Fermi superfluids at zero temperature: the superfluid nonlinear Schrödinger equation. Laser Phys. 19, 642–646 (2009)

    Google Scholar 

  15. Mocz, P., Succi, P.: Numerical solution of the nonlinear Schrödinger equation using smoothed-particle hydrodynamics. Phys. Rev. E 91, 053304 (2015)

    Google Scholar 

  16. Colin, T.: On the standing wave solutions to a nonlocal, nonlinear Schrödinger equation occurring in plasma physics. Phys. D 64, 215–236 (1993)

    MATH  Google Scholar 

  17. Lü, X., Zhu, H.-W., Yao, Z.-Z., Meng, X.-H., Zhang, C., Zhang, C.-Y., Tian, B.: Multisoliton solutions in terms of double Wronskian determinant for a generalized variable-coefficient nonlinear Schrödinger equation from plasma physics, arterial mechanics, fluid dynamics and optical communications. Ann. Phys. 323, 1947–1955 (2008)

    MATH  Google Scholar 

  18. Oelz, D., Trabelsi, S.: Analysis of a relaxation scheme for a nonlinear Schrödinger equation occurring in plasma physics. Math. Model. Anal. 19, 257–274 (2014)

    MATH  Google Scholar 

  19. Malomed, B.A., Mihalache, D.: Nonlinear waves in optical and matter-wave media: a topical survey of recent theoretical and experimental results. Rom. J. Phys. 64, 106 (2019)

    Google Scholar 

  20. Zeng, L., Zeng, J.: Gaussian-like and flat-top solitons of atoms with spatially modulated repulsive interactions. J. Opt. Soc. Am. B 36, 2278–2284 (2019)

    Google Scholar 

  21. Zeng, L., Zeng, J.: Gap-type dark localized modes in a Bose-Einstein condensate with optical lattices. Adv. Photon. 1, 046004 (2019)

    Google Scholar 

  22. Kengne, E., Liu, W.-M., Malomed, B.A.: Spatiotemporal engineering of matter-wave solitons in Bose–Einstein condensates. Phys. Rep. 899, 1–62 (2021)

    MATH  Google Scholar 

  23. Mihalache, D.: Localized structures in optical and matter-wave media: a selection of recent studies. Rom. Rep. Phys. 73, 403 (2021)

    Google Scholar 

  24. Zhong, W., Yi, L.: Two-dimensional Laguerre–Gaussian soliton family in strongly nonlocal nonlinear media. Phys. Rev. A 75, 061801 (2007)

    Google Scholar 

  25. Driben, R., Kartashov, Y.V., Malomed, B.A., Meier, T., Torner, L.: Three-dimensional hybrid vortex solitons. New J. Phys. 16, 063035 (2014)

    Google Scholar 

  26. Zhang, Y., Liu, X., Belić, M.R., Zhong, W., Zhang, Y., Xiao, M.: Propagation dynamics of a light beam in a fractional Schrödinger equation. Phys. Rev. Lett. 115, 180403 (2015)

    Google Scholar 

  27. Zhang, Y., Zhong, H., Belić, M.R., Zhu, Y., Zhong, W., Zhang, Y., Christodoulides, D.N., Xiao, M.: PT symmetry in a fractional Schrödinger equation. Laser Photon. Rev. 10, 526–531 (2016)

    Google Scholar 

  28. Wang, Q., Yang, J.R., Liang, G.: Controllable soliton transition and interaction in nonlocal nonlinear media. Nonlinear Dyn. 101, 1169–1179 (2020)

    Google Scholar 

  29. Wang, Q., Deng, Z.Z.: Controllable propagation path of imaginary value off-axis vortex soliton in nonlocal nonlinear media. Nonlinear Dyn. 100, 1589–1598 (2020)

    Google Scholar 

  30. Belić, M., Petrović, N., Zhong, W.-P., Xie, R.-H., Chen, G.: Analytical light bullet solutions to the generalized (3 + 1)-dimensional nonlinear Schrödinger equation. Phys. Rev. Lett. 101, 123904 (2008)

    Google Scholar 

  31. Li, Y., Pang, W., Fu, S., Malomed, B.A.: Two-component solitons with a spatially modulated linear coupling: inverted photonic crystals and fused couplers. Phys. Rev. A 85, 053821 (2012)

    Google Scholar 

  32. Lobanov, V.E., Borovkova, O.V., Kartashov, Y.V., Malomed, B.A., Torner, L.: Stable bright and vortex solitons in photonic crystal fibers with inhomogeneous defocusing nonlinearity. Opt. Lett. 37, 1799–1801 (2012)

    Google Scholar 

  33. Driben, R., Kartashov, Y.V., Malomed, B.A., Meier, T., Torner, L.: Soliton gyroscopes in media with spatially growing repulsive nonlinearity. Phys. Rev. Lett. 112, 020404 (2014)

    Google Scholar 

  34. Kartashov, Y.V., Malomed, B.A., Vysloukh, V.A., Belić, M.R., Torner, L.: Rotating vortex clusters in media with inhomogeneous defocusing nonlinearity. Opt. Lett. 42, 446–449 (2017)

    Google Scholar 

  35. Wang, Q., Li, J., Zhang, L., Xie, W.: Hermite–Gaussian-like soliton in the nonlocal nonlinear fractional Schrödinger equation. EPL 122, 64001 (2018)

    Google Scholar 

  36. Kartashov, Y.V., Malomed, B.A., Shnir, Y., Torner, L.: Twisted toroidal vortex solitons in inhomogeneous media with repulsive nonlinearity. Phys. Rev. Lett. 113, 264101 (2014)

    Google Scholar 

  37. Driben, R., Dror, N., Malomed, B.A., Meier, T.: Multipoles and vortex multiplets in multidimensional media with inhomogeneous defocusing nonlinearity. New J. Phys. 17, 083043 (2015)

    MATH  Google Scholar 

  38. Kartashov, Y.V., Malomed, B.A., Konotop, V.V., Lobanov, V.E., Torner, L.: Stabilization of spatiotemporal solitons in Kerr media by dispersive coupling. Opt. Lett. 40, 1045–1048 (2015)

    Google Scholar 

  39. Zhong, W.-P., Belić, M.R., Malomed, B.A., Zhang, Y., Huang, T.: Spatiotemporal accessible solitons in fractional dimensions. Phys. Rev. E 94, 012216 (2016)

    Google Scholar 

  40. Kartashov, Y.V., Hang, C., Huang, G., Torner, L.: Three-dimensional topological solitons in PT-symmetric optical lattices. Optica 3, 1048–1055 (2016)

    Google Scholar 

  41. Leblond, H., Kremer, D., Mihalache, D.: Few-cycle spatiotemporal optical solitons in waveguide arrays. Phys. Rev. A 95, 043839 (2017)

    Google Scholar 

  42. Malomed, B.A.: Optical solitons and vortices in fractional media: a mini-review of recent results. Photonics 8, 353 (2021)

    Google Scholar 

  43. Kivshar, Y.S., Luther-Davies, B.: Dark optical solitons: physics and applications. Phys. Rep. 298, 81–197 (1998)

    Google Scholar 

  44. Bergé, L.: Wave collapse in physics: principles and applications to light and plasma waves. Phys. Rep. 303, 259–370 (1998)

    Google Scholar 

  45. Kuznetsov, E.A., Dias, F.: Bifurcations of solitons and their stability. Phys. Rep. 507, 43–105 (2011)

    Google Scholar 

  46. Fibich, G.: The Nonlinear Schrödinger Equation: Singular Solutions and Optical Collapse. Springer, Heidelberg (2015)

    MATH  Google Scholar 

  47. Zhu, X., Peng, X., Qiu, Y., Wang, H., He, Y.: Nonlocal solitons supported by non-parity-time-symmetric complex potentials. New J. Phys. 22, 033035 (2020)

    Google Scholar 

  48. Zhu, X., Liao, S., Cai, Z., Qiu, Y., He, Y.: Solitons in Kerr media with two-dimensional non-parity-time-symmetric complex potentials. Chaos Solitons Fract. 146, 110837 (2021)

    MATH  Google Scholar 

  49. Xu, X., Ou, G., Chen, Z., Liu, B., Chen, W., Malomed, B.A., Li, Y.: Semidiscrete vortex solitons. Adv. Photon. Res. 2, 2000082 (2021)

    Google Scholar 

  50. Kartashov, Y.V., Zelenina, A.S., Vysloukh, V.A., Torner, L.: Stabilization of vector solitons in optical lattices. Phys. Rev. E 70, 066623 (2004)

    Google Scholar 

  51. Kartashov, Y.V., Vysloukh, V.A., Torner, L.: Soliton shape and mobility control in optical lattices. Prog. Opt. 52, 63–148 (2009)

  52. Zeng, L., Zeng, J.: One-dimensional gap solitons in quintic and cubic-quintic fractional nonlinear Schrödinger equations with a periodically modulated linear potential. Nonlinear Dyn. 98, 985–995 (2019)

    Google Scholar 

  53. Zeng, L., Zeng, J.: Preventing critical collapse of higher-order solitons by tailoring unconventional optical diffraction and nonlinearities. Commun. Phys. 3, 26 (2020)

    Google Scholar 

  54. Zhu, X., Yang, F., Cao, S., Xie, J., He, Y.: Multipole gap solitons in fractional Schrödinger equation with parity-time-symmetric optical lattices. Opt. Express 28, 1631–1639 (2020)

    Google Scholar 

  55. Kartashov, Y.V., Ye, F., Konotop, V.V., Torner, L.: Multifrequency solitons in commensurate–incommensurate photonic Moiré lattices. Phys. Rev. Lett. 127, 163902 (2021)

    Google Scholar 

  56. Zeng, L., Zhu, Y., Malomed, B.A., Mihalache, D., Wang, Q., Long, H., Cai, Y., Lu, X., Li, J.: Quadratic fractional solitons. Chaos Solitons Fract. 154, 111586 (2022)

    MATH  Google Scholar 

  57. Kartashov, Y.V., Vysloukh, V.A., Torner, L.: Propagation of solitons in thermal media with periodic nonlinearity. Opt. Lett. 33, 1774–1776 (2008)

    Google Scholar 

  58. Kartashov, Y.V., Malomed, B.A., Vysloukh, V.A., Torner, L.: Two-dimensional solitons in nonlinear lattices. Opt. Lett. 34, 770–772 (2009)

    Google Scholar 

  59. Kartashov, Y.V., Malomed, B.A., Vysloukh, V.A., Torner, L.: Vector solitons in nonlinear lattices. Opt. Lett. 34, 3625–3627 (2009)

    Google Scholar 

  60. Abdullaev, FKh., Kartashov, Y.V., Konotop, V.V., Zezyulin, D.A.: Solitons in PT-symmetric nonlinear lattices. Phys. Rev. A 83, 041805 (2011)

    Google Scholar 

  61. Zeng, L., Zeng, J.: One-dimensional solitons in fractional Schrödinger equation with a spatially periodical modulated nonlinearity: nonlinear lattice. Opt. Lett. 44, 2661–2664 (2019)

  62. Zeng, L., Mihalache, D., Malomed, B.A., Lu, X., Cai, Y., Zhu, Q., Li, J.: Families of fundamental and multipole solitons in a cubic-quintic nonlinear lattice in fractional dimension. Chaos Solitons Fract. 144, 110589 (2021)

    MATH  Google Scholar 

  63. Gatz, S., Herrmann, J.: Soliton propagation in materials with saturable nonlinearity. J. Opt. Soc. Am. B 8, 2296–2302 (1991)

    Google Scholar 

  64. Wan, Y., Wang, Z.: Bound state for fractional Schrödinger equation with saturable nonlinearity. Appl. Math. Comput. 273, 735–740 (2016)

    MATH  Google Scholar 

  65. Fedorov, S.V., Veretenov, N.A., Rosanov, N.N.: Control of topology of two-dimensional solitons in a laser with saturable absorption by means of a coherent holding radiation. Opt. Lett. 45, 3284–3287 (2020)

    Google Scholar 

  66. Moreira, F.C., Cavalcanti, S.B.: Optical solitons in a saturable nonlinear medium in the presence of an asymmetric complex potential. J. Opt. Soc. Am. B 37, 3496–3503 (2020)

    Google Scholar 

  67. Seadawy, A.R., Akram, U., Rizvi, S.T.R.: Dispersive optical solitons along with integrability test and one soliton transformation for saturable cubic-quintic nonlinear media with nonlinear dispersion. J. Geom. Phys. 177, 104521 (2022)

    MATH  Google Scholar 

  68. Shi, J., Zeng, J., Malomed, B.A.: Suppression of the critical collapse for one-dimensional solitons by saturable quintic nonlinear lattices. Chaos 28, 075501 (2018)

    Google Scholar 

  69. Kudryashov, N.A.: Bright and dark solitons in a nonlinear saturable medium. Phys. Lett. A 427, 127913 (2022)

    MATH  Google Scholar 

  70. Shi, J., Zeng, J.: 1D solitons in saturable nonlinear media with space fractional derivatives. Ann. Phys. 532, 1900385 (2020)

    Google Scholar 

  71. Reyna, A.S., Boudebs, G., Malomed, B.A., de Araújo, C.B.: Robust self-trapping of vortex beams in a saturable optical medium. Phys. Rev. A 93, 013840 (2016)

    Google Scholar 

  72. Zeng, L., Belić, M.R., Mihalache, D., Shi, J., Li, J., Li, S., Lu, X., Cai, Y., Li, J.: Families of gap solitons and their complexes in media with saturable nonlinearity and fractional diffraction. Nonlinear Dyn. 108, 1671–1680 (2022)

    Google Scholar 

  73. Hukriede, J., Runde, D., Kip, D.: Fabrication and application of holographic Bragg gratings in lithium niobate channel waveguides. J. Phys. D 36, R1–R16 (2003)

    Google Scholar 

  74. Vakhitov, N.G., Kolokolov, A.A.: Stationary solutions of the wave equation in a medium with nonlinearity saturation. Radiophys. Quantum Electron. 16, 783–789 (1973)

    Google Scholar 

Download references

Funding

National Major Instruments and Equipment Development Project of National Natural Science Foundation of China (61827815); National Natural Science Foundation of China (12174264, 62075138); Natural Science Foundation of Guangdong Province (2021A1515011909); Science and Technology Project of Shenzhen (JCYJ20190808121817100, JCYJ201908 08164007485, JSGG20191231144201722); Natural Science Foundation of Shenzhen University (2019007); Qatar National Research Fund (NPRP-S11-1126-170033); Meizhou City Social Development Science and Technology Plan Project (2021B127).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hu Long.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, L., Shi, J., Belić, M.R. et al. Multipole solitons in saturable nonlinear lattices. Nonlinear Dyn 111, 3665–3678 (2023). https://doi.org/10.1007/s11071-022-07988-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-022-07988-1

Keywords

Navigation