Skip to main content
Log in

Spontaneous symmetry breaking induced by interaction in linearly coupled binary Bose–Einstein condensates

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The spontaneous symmetry breaking (SSB) induced by a specific component of a linearly coupled binary Bose–Einstein condensate was analyzed. The model is based on linearly coupled Schrödinger equations with cubic nonlinearity and double-well potential acting on only one of the atomic components. By numerical simulations, symmetric and asymmetric ground states were obtained, and an induced asymmetry in the partner field was observed. In this sense, it is adequately demonstrated that the linear coupling mixing the two-field component (Rabi coupling) promotes the (in)balance between the atomic species, as well as the appearance of the Josephson and SSB phases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. Anderson, M.H., Ensher, J.R., Matthews, M.R., Wieman, C.E., Cornell, E.A.: Observation of Bose-Einstein condensation in a dilute atomic vapor. Science 269(5221), 198–201 (1995). https://doi.org/10.1126/science.269.5221.198

    Article  Google Scholar 

  2. Davis, K.B., Mewes, M.O., Andrews, M.R., van Druten, N.J., Durfee, D.S., Kurn, D.M., Ketterle, W.: Bose-Einstein Condensation in a Gas of Sodium Atoms. Phys. Rev. Lett. 75(22), 3969–3973 (1995). https://doi.org/10.1103/PhysRevLett.75.3969

    Article  Google Scholar 

  3. Bradley, C.C., Sackett, C.A., Tollett, J.J., Hulet, R.G.: Evidence of Bose-Einstein Condensation in an Atomic Gas with Attractive Interactions. Phys. Rev. Lett. 75(9), 1687–1690 (1995). https://doi.org/10.1103/PhysRevLett.75.1687

    Article  Google Scholar 

  4. Khaykovich, L., Schreck, F., Ferrari, G., Bourdel, T., Cubizolles, J., Carr, L.D., Castin, Y., Salomon, C.: Formation of a Matter-Wave Bright Soliton. Science 296(5571), 1290–1293 (2002). https://doi.org/10.1126/science.1071021

    Article  Google Scholar 

  5. Cornish, S.L., Thompson, S.T., Wieman, C.E.: Formation of bright matter-wave solitons during the collapse of attractive Bose-Einstein condensates. Phys. Rev. Lett. 96(17), 170401 (2006). https://doi.org/10.1103/PhysRevLett.96.170401

    Article  Google Scholar 

  6. Marchant, A.L., Billam, T.P., Wiles, T.P., Yu, M.M.H., Gardiner, S.A., Cornish, S.L.: Controlled formation and reflection of a bright solitary matter-wave. Nat. Commun. 4(1), 1865 (2013). https://doi.org/10.1038/ncomms2893

    Article  Google Scholar 

  7. Kh Abdullaev, F., Gammal, A., Kamchatnov, A.M., Tomio, L.: Dynamics of bright matter wave solitons in a Bose-Einstein condensate. Int. J. Mod. Phys. B 19(22), 3415–3473 (2005). https://doi.org/10.1142/S0217979205032279

    Article  MATH  Google Scholar 

  8. Salasnich, L.: Bright solitons in ultracold atoms. Opt. Quantum Electron. 49(12), 409 (2017). https://doi.org/10.1007/s11082-017-1247-5

    Article  Google Scholar 

  9. Strecker, K.E., Partridge, G.B., Truscott, A.G., Hulet, R.G.: Formation and propagation of matter-wave soliton trains. Nature 417(6885), 150–153 (2002). https://doi.org/10.1038/nature747

    Article  Google Scholar 

  10. Burger, S., Bongs, K., Dettmer, S., Ertmer, W., Sengstock, K., Sanpera, A., Shlyapnikov, G.V., Lewenstein, M.: Dark Solitons in Bose-Einstein Condensates. Phys. Rev. Lett. 83(25), 5198–5201 (1999). https://doi.org/10.1103/PhysRevLett.83.5198

    Article  Google Scholar 

  11. Denschlag, J., Simsarian, J.E., Feder, D.L., Clark, C.W., Collins, L.A., Cubizolles, J., Deng, L., Hagley, E.W., Helmerson, K., Reinhardt, W.P., Rolston, S.L., Schneider, B.I., Phillips, W.D.: Generating solitons by phase engineering of a Bose-Einstein condensate. Science 287(5450), 97–101 (2000). https://doi.org/10.1126/science.287.5450.97

    Article  Google Scholar 

  12. Anderson, B.P., Haljan, P.C., Regal, C.A., Feder, D.L., Collins, L.A., Clark, C.W., Cornell, E.A.: Watching Dark solitons decay into vortex rings in a Bose-Einstein condensate. Phys. Rev. Lett. 86(14), 2926–2929 (2001). https://doi.org/10.1103/PhysRevLett.86.2926

    Article  Google Scholar 

  13. Matthews, M.R., Anderson, B.P., Haljan, P.C., Hall, D.S., Wieman, C.E., Cornell, E.A.: Vortices in a Bose-Einstein condensate. Phys. Rev. Lett. 83(13), 2498–2501 (1999). https://doi.org/10.1103/PhysRevLett.83.2498

    Article  Google Scholar 

  14. Madison, K.W., Chevy, F., Wohlleben, W., Dalibard, J.: Vortex formation in a stirred Bose-Einstein condensate. Phys. Rev. Lett. 84(5), 806–809 (2000). https://doi.org/10.1103/PhysRevLett.84.806

    Article  Google Scholar 

  15. Billy, J., Josse, V., Zuo, Z., Bernard, A., Hambrecht, B., Lugan, P., Clément, D., Sanchez-Palencia, L., Bouyer, P., Aspect, A.: Direct observation of Anderson localization of matter waves in a controlled disorder. Nature 453(7197), 891–894 (2008). https://doi.org/10.1038/nature07000

    Article  Google Scholar 

  16. Roati, G., D’Errico, C., Fallani, L., Fattori, M., Fort, C., Zaccanti, M., Modugno, G., Modugno, M., Inguscio, M.: Anderson localization of a non-interacting Bose-Einstein condensate. Nature 453(7197), 895–898 (2008). https://doi.org/10.1038/nature07071

    Article  Google Scholar 

  17. Di Carli, A., Colquhoun, C.D., Henderson, G., Flannigan, S., Oppo, G.L., Daley, A.J., Kuhr, S., Haller, E.: Excitation modes of bright matter-wave solitons. Phys. Rev. Lett. 123(12), 123602 (2019). https://doi.org/10.1103/PhysRevLett.123.123602

    Article  Google Scholar 

  18. Luo, D., Jin, Y., Nguyen, J.H.V., Malomed, B.A., Marchukov, O.V., Yurovsky, V.A., Dunjko, V., Olshanii, M., Hulet, R.G.: Creation and characterization of matter-wave breathers. Phys. Rev. Lett. 125(18), 183902 (2020). https://doi.org/10.1103/PhysRevLett.125.183902

    Article  Google Scholar 

  19. Cabrera, C.R., Tanzi, L., Sanz, J., Naylor, B., Thomas, P., Cheiney, P., Tarruell, L.: Quantum liquid droplets in a mixture of Bose-Einstein condensates. Science 359(6373), 301–304 (2018). https://doi.org/10.1126/science.aao5686

    Article  Google Scholar 

  20. Cheiney, P., Cabrera, C.R., Sanz, J., Naylor, B., Tanzi, L., Tarruell, L.: Bright soliton to quantum droplet transition in a mixture of Bose-Einstein condensates. Phys. Rev. Lett. 120(13), 135301 (2018). https://doi.org/10.1103/PhysRevLett.120.135301

    Article  Google Scholar 

  21. Semeghini, G., Ferioli, G., Masi, L., Mazzinghi, C., Wolswijk, L., Minardi, F., Modugno, M., Modugno, G., Inguscio, M., Fattori, M.: Self-bound quantum droplets of atomic mixtures in free space. Phys. Rev. Lett. 120(23), 235301 (2018). https://doi.org/10.1103/PhysRevLett.120.235301

    Article  Google Scholar 

  22. D’Errico, C., Burchianti, A., Prevedelli, M., Salasnich, L., Ancilotto, F., Modugno, M., Minardi, F., Fort, C.: Observation of quantum droplets in a heteronuclear bosonic mixture. Phys. Rev. Res. 1(3), 033155 (2019). https://doi.org/10.1103/PhysRevResearch.1.033155

    Article  Google Scholar 

  23. Jain, P., Boninsegni, M.: Quantum demixing in binary mixtures of dipolar bosons. Phys. Rev. A 83(2), 023602 (2011). https://doi.org/10.1103/PhysRevA.83.023602

    Article  Google Scholar 

  24. dos Santos, M.C.P., Cardoso, W.B.: Anderson localization induced by interaction in linearly coupled binary Bose-Einstein condensates. Phys. Rev. E 103(5), 052210 (2021). https://doi.org/10.1103/PhysRevE.103.052210

    Article  Google Scholar 

  25. Xu, X.Q., Lu, L.H., Li, Y.Q.: Stability and dynamical property for two-species ultracold atoms in double wells. Phys. Rev. A 78(4), 043609 (2008). https://doi.org/10.1103/PhysRevA.78.043609

    Article  Google Scholar 

  26. Satija, I.I., Balakrishnan, R., Naudus, P., Heward, J., Edwards, M., Clark, C.W.: Symmetry-breaking and symmetry-restoring dynamics of a mixture of Bose-Einstein condensates in a double well. Phys. Rev. A 79(3), 033616 (2009). https://doi.org/10.1103/PhysRevA.79.033616

    Article  Google Scholar 

  27. Mazzarella, G., Moratti, M., Salasnich, L., Salerno, M., Toigo, F.: Atomic Josephson junction with two bosonic species. J. Phys. B At. Mol. Opt. Phys. 42(12), 125301 (2009). https://doi.org/10.1088/0953-4075/42/12/125301

  28. Acus, A., Malomed, B.A., Shnir, Y.: Spontaneous symmetry breaking of binary fields in a nonlinear double-well structure. Phys. D Nonlinear Phenom. 241(11), 987–1002 (2012). https://doi.org/10.1016/j.physd.2012.02.012. https://linkinghub.elsevier.com/retrieve/pii/S0167278912000498

  29. Adhikari, S.K., Malomed, B.A., Salasnich, L., Toigo, F.: Spontaneous symmetry breaking of Bose-Fermi mixtures in double-well potentials. Phys. Rev. A 81(5), 053630 (2010). https://doi.org/10.1103/PhysRevA.81.053630

    Article  Google Scholar 

  30. Rusin, R., Marangell, R., Susanto, H.: Symmetry breaking bifurcations in the NLS equation with an asymmetric delta potential. Nonlinear Dyn. 100(4), 3815–3824 (2020). https://doi.org/10.1007/s11071-020-05730-3

    Article  Google Scholar 

  31. Dong, L., Huang, C., Qi, W.: Symmetry breaking and restoration of symmetric solitons in partially parity-time-symmetric potentials. Nonlinear Dyn. 98(3), 1701–1708 (2019). https://doi.org/10.1007/s11071-019-05280-3

    Article  MATH  Google Scholar 

  32. Hacker, N., Malomed, B.A.: Nonlinear Dynamics of Wave Packets in Tunnel-Coupled Harmonic-Oscillator Traps. Symmetry (Basel). 13(3), 372 (2021). https://doi.org/10.3390/sym13030372

    Article  Google Scholar 

  33. Espinosa-Cerón, A., Malomed, B.A., Fujioka, J., Rodríguez, R.F.: Symmetry breaking in linearly coupled Korteweg-de Vries systems. Chaos An Interdiscip. J. Nonlinear Sci. 22(3), 033145 (2012). https://doi.org/10.1063/1.4752244

    Article  MATH  Google Scholar 

  34. Richaud, A., Zenesini, A., Penna, V.: The mixing-demixing phase diagram of ultracold heteronuclear mixtures in a ring trimer. Sci. Rep. 9(1), 6908 (2019). https://doi.org/10.1038/s41598-019-43365-6

    Article  Google Scholar 

  35. Pitaevskii, L.P., Stringari, S.: Bose–Einstein Condensation. International Series of Monographs on Physics. Clarendon Press (2003). https://books.google.com.br/books?id=rIobbOxC4j4C

  36. Pethick, C.J., Smith, H.: Bose–Einstein Condensation in Dilute Gases. Cambridge University Press, Cambridge (2008). https://doi.org/10.1017/CBO9780511802850

  37. Salasnich, L., Parola, A., Reatto, L.: Effective wave equations for the dynamics of cigar-shaped and disk-shaped Bose condensates. Phys. Rev. A 65(4), 043614 (2002). https://doi.org/10.1103/PhysRevA.65.043614

    Article  Google Scholar 

  38. Massignan, P., Modugno, M.: One-dimensional model for the dynamics and expansion of elongated Bose-Einstein condensates. Phys. Rev. A 67(2), 023614 (2003). https://doi.org/10.1103/PhysRevA.67.023614

    Article  Google Scholar 

  39. Buitrago, C.A.G., Adhikari, S.K.: Mean–field equations for cigar–and disc–shaped Bose and Fermi superfluids. J. Phys. B At. Mol. Opt. Phys. 42(21), 215306 (2009). https://doi.org/10.1088/0953-4075/42/21/215306

  40. Mateo, A.M., Delgado, V.: Effective mean-field equations for cigar-shaped and disk-shaped Bose-Einstein condensates. Phys. Rev. A 77(1), 013617 (2008). https://doi.org/10.1103/PhysRevA.77.013617

    Article  Google Scholar 

  41. Couto, H.L.C., Avelar, A.T., Cardoso, W.B.: Effective Equations for repulsive quasi-one dimensional Bose-Einstein condensates trapped with anharmonic transverse potentials. Ann. Phys. 530(4), 1700352 (2018). https://doi.org/10.1002/andp.201700352

    Article  Google Scholar 

  42. Salasnich, L., Parola, A., Reatto, L.: Condensate bright solitons under transverse confinement. Phys. Rev. A 66(4), 043603 (2002). https://doi.org/10.1103/PhysRevA.66.043603

    Article  Google Scholar 

  43. Salasnich, L., Malomed, B.A.: Vector solitons in nearly one-dimensional Bose-Einstein condensates. Phys. Rev. A 74(5), 053610 (2006). https://doi.org/10.1103/PhysRevA.74.053610

  44. Salasnich, L., Cetoli, A., Malomed, B.A., Toigo, F., Reatto, L.: Bose-Einstein condensates under a spatially modulated transverse confinement. Phys. Rev. A 76(1), 013623 (2007). https://doi.org/10.1103/PhysRevA.76.013623

    Article  Google Scholar 

  45. Adhikari, S.K., Salasnich, L.: Effective nonlinear Schrödinger equations for cigar-shaped and disc-shaped Fermi superfluids at unitarity. New J. Phys. 11(2), 023011 (2009). https://doi.org/10.1088/1367-2630/11/2/023011

    Article  Google Scholar 

  46. Cardoso, W.B., Avelar, A.T., Bazeia, D.: One-dimensional reduction of the three-dimenstional Gross-Pitaevskii equation with two- and three-body interactions. Phys. Rev. E 83(3), 36604 (2011). https://doi.org/10.1103/PhysRevE.83.036604

    Article  Google Scholar 

  47. dos Santos, M.C., Cardoso, W.B.: Effective equation for quasi-one dimensional tube-shaped Bose-Einstein condensates. Phys. Lett. A 383(13), 1435–1440 (2019)

  48. dos Santos, M.C.P., Malomed, B.A., Cardoso, W.B.: Quasi-one-dimensional approximation for Bose–Einstein condensates transversely trapped by a funnel potential. J. Phys. B At. Mol. Opt. Phys. 52(24), 245301 (2019). https://doi.org/10.1088/1361-6455/ab4fb7

  49. dos Santos, M.C.P., Cardoso, W.B., Malomed, B.A.: An effective equation for quasi-one-dimensional funnel-shaped Bose-Einstein condensates with embedded vorticity. Eur. Phys. J. Spec. Top. (2021). https://doi.org/10.1140/epjs/s11734-021-00351-2

    Article  Google Scholar 

  50. Young-S., L.E., Salasnich, L., Adhikari, S.K.: Dimensional reduction of a binary Bose–Einstein condensate in mixed dimensions. Phys. Rev. A 82(5), 053601 (2010). https://doi.org/10.1103/PhysRevA.82.053601

  51. Adhikari, S.K.: Self–trapping of a binary Bose–Einstein condensate induced by interspecies interaction. J. Phys. B At. Mol. Opt. Phys. 44(7), 075301 (2011). https://doi.org/10.1088/0953-4075/44/7/075301

  52. Landau, L., Lifshitz, L.: Course in Theoretical Physics (Quantum Mechanics: Non-Relativistic Theory), vol. 3. Pergamon, New York (1959)

    Google Scholar 

  53. Pöschl, G., Teller, E.: Bemerkungen zur Quantenmechanik des anharmonischen Oszillators. Zeitschrift für Phys. 83(3–4), 143–151 (1933). https://doi.org/10.1007/BF01331132

    Article  MATH  Google Scholar 

  54. Kiriushcheva, N., Kuzmin, S.: Scattering of a Gaussian wave packet by a reflectionless potential. Am. J. Phys. 66(10), 867–872 (1998)

    Article  Google Scholar 

  55. Lekner, J.: Reflectionless eigenstates of the sech2 potential. Am. J. Phys. 75(12), 1151–1157 (2007). https://doi.org/10.1119/1.2787015

    Article  Google Scholar 

  56. Şakiroğlu, S., Ungan, F., Yesilgul, U., Mora-Ramos, M., Duque, C., Kasapoglu, E., Sari, H., Sökmen, I.: Nonlinear optical rectification and the second and third harmonic generation in Pöschl-Teller quantum well under the intense laser field. Phys. Lett. A 376(23), 1875–1880 (2012)linkinghub.elsevier.com/retrieve/pii/S0375960112004732

  57. Radovanović, J., Milanović, V., Ikonić, Z., Indjin, D.: Intersubband absorption in Pöschl-Teller-like semiconductor quantum wells. Phys. Lett. A 269(2–3), 179–185 (2000)linkinghub.elsevier.com/retrieve/pii/S0375960100002383

  58. Yıldırım, H., Tomak, M.: Nonlinear optical properties of a Pöschl-Teller quantum well. Phys. Rev. B 72(11), 115340 (2005). https://doi.org/10.1103/PhysRevB.72.115340

    Article  Google Scholar 

  59. Mazzarella, G., Moratti, M., Salasnich, L., Toigo, F.: Nonlinear quantum model for atomic Josephson junctions with one and two bosonic species. J. Phys. B At. Mol. Opt. Phys. 43(6), 065303 (2010). https://doi.org/10.1088/0953-4075/43/6/065303

  60. Mazzarella, G., Salasnich, L.: Spontaneous symmetry breaking and collapse in bosonic Josephson junctions. Phys. Rev. A 82(3), 033611 (2010). https://doi.org/10.1103/PhysRevA.82.033611

    Article  Google Scholar 

  61. Birnbaum, Z., Malomed, B.A.: Families of spatial solitons in a two-channel waveguide with the cubic-quintic nonlinearity. Phys. D Nonlinear Phenom. 237(24), 3252–3262 (2008)

  62. Mayteevarunyoo, T., Malomed, B.A., Dong, G.: Spontaneous symmetry breaking in a nonlinear double-well structure. Phys. Rev. A 78(5), 053601 (2008). https://doi.org/10.1103/PhysRevA.78.053601

    Article  Google Scholar 

Download references

Acknowledgements

The author acknowledges the financial support of the Brazilian agencies CNPq (#306065/2019-3 & #425718/2018-2), CAPES, and FAPEG (PRONEM #201710267000540 & PRONEX #201710267000503). This work was also performed as part of the Brazilian National Institute of Science and Technology (INCT) for Quantum Information (#465469/2014-0). WBC also thanks Juracy Leandro dos Santos for his contribution in implementing part of the infrastructure used in the simulation processes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mateus C. P. dos Santos.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

dos Santos, M.C.P., Cardoso, W.B. Spontaneous symmetry breaking induced by interaction in linearly coupled binary Bose–Einstein condensates. Nonlinear Dyn 111, 3653–3664 (2023). https://doi.org/10.1007/s11071-022-07986-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-022-07986-3

Keywords

Navigation