Skip to main content
Log in

Dynamics of a new modified self-sustained biological trirythmic system with fractional time-delay feedback under correlated noise

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The dynamics of a new modified Van der Pol (VDP) self-sustained oscillator, driven by fractional time-delay feedback under correlated noise, is addressed in this paper. The studied system presents a tristability mode with the coexistence of three stable limit cycles in the deterministic case. Under the generalized harmonic balance technique, the fractional derivative simultaneously includes an equivalent quasi-linear dissipative force and quasi-linear restoring force, which reduces the whole problem to an equivalent VDP equation without a fractional derivative. The stochastic averaging method investigates analytical solutions for the equivalent stochastic equation. The critical parametric conditions for stochastic \({\mathcal {P}}\)-bifurcation of amplitude are obtained via the singularity theory for the system switch among the three steady states. The analytical solutions are confronted with direct numerical simulations, in a process where the dynamical features of the system are characterized using the stationary probability density function (PDF) of amplitude and joint PDF of displacement and velocity. A satisfactory agreement is obtained between both approaches, therefore confirming the accuracy of the theoretical predictions. Changing the fractional order, the fractional coefficient, the time delay parameter, and the correlation time also appears to induce the occurrence of the stochastic \({\mathcal {P}}\)-bifurcation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Data Availability

The simulation data related to the current study are not publicly available due to but can be obtained from the corresponding author, CBT, on reasonable request.

References

  1. Ushakov, O.V., Wunsche, H.J., Henneberger, F., Khovanov, I.A., Schimansky-Geier, L., Zaks, M.A.: Coherence resonance near a Hopf bifurcation. Phys. Rev. Lett. 95, 123903 (2005)

    Google Scholar 

  2. Mankin, R., Laas, T., Sauga, A., Ainsaar, A., Reiter, E.: Colored noise induced Hopf bifurcations in predator-prey communities. Phys. Rev. E 74, 021101 (2006)

    Google Scholar 

  3. Lin, Y.K., Cai, G.Q.: Probabilistic Structure Dynamic: Advanced Theory and Applications. McGraw-Hill, New York (1995)

    Google Scholar 

  4. Braun, J., Mattia, M.: Attractors and noise: twin drivers of decisions and multistability. Neuroimage 52, 740 (2010)

    Google Scholar 

  5. Decroly, O., Goldbeter, A.: From simple to complex oscillatory behaviour: analysis of bursting in a multiply regulated biochemical system. J. Theor. Biol. 124, 219 (1987)

    Google Scholar 

  6. Yan, J., Goldbeter, A.: Multi-rhythmicity generated by coupling two cellular rhythms. J. R. Soc. Interface 16, 20180835 (2019)

    Google Scholar 

  7. Laurent, M., Kellershohn, N.: Multistability: a major means of differentiation and evolution in biological systems. Trends Biochem. Sci. 24, 418 (1999)

    Google Scholar 

  8. Angeli, D., Ferrell, J.E., Sontag, E.D.: Detection of multistability, bifurcations, and hysteresis in a large class of biological positive-feedback systems. Proc. Natl. Acad. Sci. 101, 1822–1827 (2004)

    Google Scholar 

  9. Mackey, M., Glass, L.: Oscillation and chaos in physiological control systems. Science 197, 287 (1977)

    MATH  Google Scholar 

  10. Sun, Z., Fu, J., Xiao, Y., Xu, W.: Delay-induced stochastic bifurcations in a bistable system under white noise. Chaos 25, 083102 (2015)

    MATH  Google Scholar 

  11. Sun, Z., Yang, X., Xiao, Y., Xu, W.: Modulating resonance behaviors by noise recycling in bistable systems with time delay. Chaos 24, 023126 (2014)

    MATH  Google Scholar 

  12. Hale, J.K., Lunel, S.M.V.: Introduction to Functional Differential Equations. Springer, New York (1993)

    MATH  Google Scholar 

  13. Sun, Z., Yang, X., Xu, W.: Taming complexity in nonlinear dynamical systems by recycled signal. Sci. China Technol. Sci. 59, 403 (2016)

    Google Scholar 

  14. Ghosh, P., Sen, S., Riaz, S.S., Ray, D.S.: Controlling birhythmicity in a self-sustained oscillator by time-delayed feedback. Phys. Rev. E 83, 036205 (2011)

    Google Scholar 

  15. Zakharova, A., Vadivasova, T., Anishchenko, V., Koseska, A., Kurths, J.: Stochastic bifurcations in coherence like resonance in self-sustained bistable noisy oscillator. Phys. Rev. E 81, 011106 (2010)

    Google Scholar 

  16. Decroly, O., Goldbeter, A.: Birhythmicity, chaos and other patterns of temporal self-organization in a multiply regulated biochemical system. Proc. Natl. Acad. Sci. USA 79, 6917 (1982)

    MATH  Google Scholar 

  17. Xu, Y., Gu, R.C., Zhang, H.Q., Xu, W., Duan, J.Q.: Stochastic bifurcations in a bistable Duffing van der Pol oscillator with colored noise. Phys. Rev. E 83, 056215 (2011)

    Google Scholar 

  18. Wu, Z.Q., Hao, Y.: Three-peak P-bifurcations in stochastically excited van der Pol Duffing oscillator. Sci. Chin. Phys. Mech. Astron. 43, 524 (2013)

    Google Scholar 

  19. Wu, Z.Q., Hao, Y.: Stochastic P-bifurcations in tri-stable van der Pol Duffing oscillator with multiplicative colored noise. Acta Phys. Sin. 64, 060501 (2015)

    Google Scholar 

  20. Mbakob, R.Y., Yamapi, R., Filatrella, G., Tchawoua, C.: Stochastic Bifurcations induced by correlated Noise in a Birhythmic van der Pol System. Commun. Nonlinear Sci. Numer. Simul. 33, 70 (2016)

    MATH  Google Scholar 

  21. Horsthemke, W., Lefever, R.: Noise-induced transitions. In: Theory and Applications in Physics, Chemistry, and Biology. Springer, Berlin (1984)

  22. Sun, Z., Xu, W., Yang, X., Fang, T.: Effects of time delays on bifurcation and chaos in a non-autonomous system with multiple time delays. Chaos Solit. Fract. 31, 39 (2007)

    MATH  Google Scholar 

  23. Geffert, P.M., Zakharova, A., Vullings, A., Just, W., Scholl, E.: Modulating coherence resonance in non-excitable systems by time-delayed feedback. Eur. Phys. J. B 87, 291 (2014)

    Google Scholar 

  24. Huang, Z.L., Jin, X.L.: Response and stability of a SDOF strongly nonlinear stochastic system with light damping modeled by a fractional derivative. J. Sound Vib. 319, 1121 (2009)

    Google Scholar 

  25. Chen, L.C., Zhu, W.Q.: Stochastic jump and bifurcation of Duffing oscillator with fractional derivative damping under combined harmonic and white noise excitations. Int. J. Non-Linear Mech. 46, 1324 (2011)

    Google Scholar 

  26. Hu, F., Chen, L.C., Zhu, W.Q.: Response of strongly nonlinear oscillator with fractional derivative damping under bounded noise excitation. Int. J. Non-Linear Mech. 47, 1081 (2012)

    Google Scholar 

  27. Sheu, L.J., Chen, H.K., Chen, J.H., Tam, L.M.: Chaotic dynamics of the fractionally damped Duffing equation. Chaos Solit. Fract. 32, 1459 (2007)

    MATH  Google Scholar 

  28. Chen, J.H., Chen, W.C.: Chaotic dynamics of the fractionally damped Van der Pol equation. Chaos Solit. Fract. 35, 188 (2008)

    Google Scholar 

  29. Qin, G., Zhongkui, S., Wei, X.: Bifurcations in a fractional birhythmic biological system with time delay. Commun. Nonlinear Sci. Numer. Simul. 72, 318 (2019)

    MATH  Google Scholar 

  30. Chen, L.C., Zhu, W.Q.: First passage failure of SDOF nonlinear oscillator with lightly fractional derivative damping under real noise excitations. Prob. Eng. Mech. 26, 208 (2011)

    Google Scholar 

  31. Guimfack, B.A., Mbakob Yonkeu, R., Tabi, C.B., Kofané, T.C.: On stochastic response of fractional-order generalized birhythmic van der Pol oscillator subjected to delayed feedback displacement and Gaussian white noise excitation. Chaos Solit. Fract. 157, 111936 (2022)

    MATH  Google Scholar 

  32. Fox, R.F., Gatland, I.R., Roy, R., Vemuri, G.: Fast accurate algorithm for numerical simulation of exponentially correlated colored noise. Phys. Rev. A 38, 5938 (1988)

    Google Scholar 

  33. Kaiser, F., Naturforsch, Z.: Coherent oscillation in biological systems I: bifurcation phenomena and phase transitions in an enzyme-substrate reaction with ferroelectric behaviour. Z. Naturforschung A 33, 294 (1978)

    Google Scholar 

  34. Fröhlich, H.: long-range coherence and energy storage in biological systems. Int. J. Quantum Chem. 2, 641 (1968)

    Google Scholar 

  35. Enjieu Kadji, H.G., Yamapi, R.: General synchronization dynamics of coupled Van der Pol Duffing oscillators. Physica A 370, 316 (2006)

    Google Scholar 

  36. Enjieu Kadji, H.G., Chabi Orou, J.B., Yamapi, R., Woafo, P.: Nonlinear dynamics and strange attractors in the biological system. Chaos Solit. Fract. 32, 862 (2007)

    MATH  Google Scholar 

  37. Enjieu Kadji, H.G., Chabi Orou, J.B., Woafo, P.: Synchronisation dynamics in a ring of four mutually coupled biological systems. Commun. Nonlinear Sci. Numer. Simul. 13, 1361 (2008)

    MATH  Google Scholar 

  38. Hänggi, P., Talkner, P.: Non-Markov processes: the problem of the mean first passage time. Z. Phys. B Condens. Matter 45, 79 (1981)

    Google Scholar 

  39. Zhou, T., Chen, L., Aihara, K.: Molecular communication through stochastic synchronization induced by extracellular fluctuations. Phys. Rev. Lett. 95, 178103 (2005)

    Google Scholar 

  40. Voltera, V.: Lecons sur la théorie mathématique de la lutte pour la vie. Gauthier-Villars, Paris (1931)

    Google Scholar 

  41. Beddington, J.R., Free, C.A., Lawton, J.H.: Dynamic complexity in predator-prey models framed in difference equations. Nature 255, 58 (1975)

    Google Scholar 

  42. Podlubny, I.: Fractional Differential Equations. An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of their Solution and Some of their Applications. Academic Press, San Diego, CA (1999)

    MATH  Google Scholar 

  43. Scherer, R., Kalla, S.L., Tang, Y., Huang, J.: The Grünwald–Letnikov method for fractional differential equations. Comput. Math. Appl. 62, 902 (2011)

    MATH  Google Scholar 

  44. Caputo, M.: Linear models of dissipation whose \(Q\) is almost frequency independent-II. Geophys. J. R. Astron. Soc. 13, 529 (1967)

    Google Scholar 

  45. Bansi, C.D.K., Tabi, C.B., Motsumi, G.T., Mohamadou, A.: Fractional blood flow in oscillatory arteries with thermal radiation and magnetic field effects. J. Magn. Magn. Mater. 456, 38 (2018)

    Google Scholar 

  46. Tabi, C.B.: Fractional unstable patterns of energy in \(\alpha -\)helix proteins with long-range interactions. Chaos Solit. Fract. 116, 386 (2018)

    Google Scholar 

  47. Njagarah, J.B.H., Tabi, C.B.: Spatial synchrony in fractional-order metapopulation cholera transmission. Chaos Solit. Fract. 117, 37 (2018)

    MATH  Google Scholar 

  48. Doungmo, E.F.G., Tabi, C.B.: On the chaotic pole of attraction for Hindmarsh–Rose neuron dynamics with external current input. Chaos 29, 023104 (2019)

    MATH  Google Scholar 

  49. Tene, A.G., Tchoffo, M., Tabi, C.B., Kofané, T.C.: Generalized synchronization of regulate seizures dynamics in partial epilepsy with fractional-order derivatives. Chaos Solit. Fract. 132, 109553 (2020)

    MATH  Google Scholar 

  50. Tabi, C.B., Ndjawa, P.A.Y., Motsumi, T.G., Bansi, C.D.K., Kofané, T.C.: Magnetic field effect on a fractionalized blood flow model in the presence of magnetic particles and thermal radiations. Chaos Soli. Fract. 131, 109540 (2020)

    MATH  Google Scholar 

  51. Sengha, G.G., Fokou Kenfack, W., Siewé Siewé, M., Tabi, C.B., Kofané, T.C.: Dynamics of a non-smooth type hybrid energy harvester with nonlinear magnetic coupling. Commun. Nonlinear Sci. Numer. Simul. 90, 105364 (2020)

    MATH  Google Scholar 

  52. Ndenda, J.P., Njagarah, J.B.H., Tabi, C.B.: Fractional-order model for myxomatosis transmission dynamics: significance of contact, vector control and culling. SIAM J. Appl. Math. 81, 641 (2021)

    MATH  Google Scholar 

  53. Bitang á Ziem, D.C., Gninzanlong, C.L., Tabi, C.B., Kofané, T.C.: Dynamics and pattern formation of a diffusive predator-prey model in the subdiffusive regime in presence of toxicity. Chaos Solit. Fract. 151, 111238 (2021)

    Google Scholar 

  54. Ndjawa Yomi, P.A., Bansi Kamdem, C.D., Nkoa Nkomom, T., Tabi, C.B., Mohamadou, A., Kofané, T.C.: Fractional blood flow in rotating nanofluid with different shapes nanoparticles in the influence of activation energy and thermal radiation. Chaos 31, 093109 (2021)

    Google Scholar 

  55. Sengha, G.G., Fokou Kenfack, W., Owono Bekoa, D.J., Siewé Siewé, M., Tabi, C.B., Kofané, T.C.: Fractional properties’ effects on a hybrid energy harvesting system dynamics. Meccanica 56, 2451 (2021)

    Google Scholar 

  56. Tabi, C.B.: Dynamical analysis of the FitzHugh–Nagumo oscillations through a modified Van der Pol equation with fractional-order derivative term. Int. J. Nonl. Mech. 105, 173 (2018)

    Google Scholar 

  57. Guimfack, B.A., Tabi, C.B., Mohamadou, A., Kofané, T.C.: Stochastic dynamics of the FitzHugh–Nagumo neuron model through a modified Van der Pol equation with fractional-order term and Gaussian white noise excitation. Disc. Cont. Dyn. Syst. Ser. S 14, 2229 (2021)

    MATH  Google Scholar 

  58. Guo, Q., Sun, Z., Xu, W.: Stochastic bifurcations in a birhythmic biological model with time-delayed feedbacks. Int. J. Bifurc. Chaos. 28, 1850048 (2018)

  59. Yang, Y.G., Xu, W., Sun, Y.H., Gu, X.D.: Stochastic response of van der Pol oscillator with two kinds of fractional derivatives under Gaussian white noise excitation. Chin. Phys. B 25, 020201 (2016)

  60. Enjieu Kadji, H.G., Yamapi, R., Chabi Orou, J.B.: Synchronization of two coupled self-excited systems with multi-limit cycles. Chaos 17, 033113 (2007)

    MATH  Google Scholar 

  61. Rand, R.H.: Lecture Notes on Nonlinear Vibrations, Version 52, Copyright (2005)

  62. Cvitanovi, P., Artuso, R., Mainieri, R., Tanner, G., Vattay, G.: Chaos Book, ChaosBook.org, version 13.3 (Sept. 23, 2010)

  63. Spanos, P., Zeldin, B.: Random vibration of system with frequency-dependent parameters or fractional derivatives. J. Eng. Mech. 123, 290 (1997)

    Google Scholar 

  64. Zhu, W.Q.: Stochastic averaging methods in random vibration. Appl. Mech. Rev. 41(5), 189 (1988)

    Google Scholar 

  65. Mbakob Yonkeu, R., Yamapi, R., Filatrella, G., Tchawoua, C.: Pseudo-potential of birhythmic Van der Pol type systems with correlated noise. Nonlinear Dyn. 84, 627 (2016)

    MATH  Google Scholar 

  66. Robert, J., Spanos, P.: Stochastic averaging: an approximate method of solving random vibration problems. Int. J. Nonlinear Mech. 21, 111 (1986)

    MATH  Google Scholar 

  67. Stratonovich, R.L.: Topics in the Theory of Random Noise, vol. 1. Gordon and Breach, London (1963)

    Google Scholar 

  68. Stratonovich, R.L.: Topics in the Theory of Random Noise, vol. 2. Gordon and Breach, London (1967)

    MATH  Google Scholar 

  69. Ling, F.H.: Catastrophe Theory and its Applications. Shang Hai Jiao Tong University Press, Shanghai (1987)

    Google Scholar 

Download references

Funding

CBT thanks the Kavli Institute for Theoretical Physics (KITP), University of California Santa Barbara (USA), where this work was supported in part by the National Science Foundation Grant no. NSF PHY-1748958, NIH Grant no. R25GM067110, and the Gordon and Betty Moore Foundation Grant no. 2919.01.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. B. Tabi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yonkeu, R.M., Guimfack, B.A., Tabi, C.B. et al. Dynamics of a new modified self-sustained biological trirythmic system with fractional time-delay feedback under correlated noise. Nonlinear Dyn 111, 3743–3764 (2023). https://doi.org/10.1007/s11071-022-07983-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-022-07983-6

Keywords

Navigation